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Abstract
This paper argues that in mathematical practice, conjectures are sometimes con-
firmed by “Inference to the Best Explanation” (IBE) as applied to some mathematical
evidence. IBE operates in mathematics in the same way as IBE in science. When
applied to empirical evidence, IBE sometimes helps to justify the expansion of scien-
tists’ ontological commitments. Analogously, when applied tomathematical evidence,
IBE sometimes helps to justify mathematicians’ in expanding the range of their
ontological commitments. IBE supplements other forms of non-deductive reason-
ing in mathematics, avoiding obstacles sometimes faced by enumerative induction
or hypothetico-deductive reasoning. Both platonist and non-platonist interpretations
of mathematics ought to accommodate explanation in mathematics and ought to
recognize IBE in mathematics, though these interpretations disagree on the ontolog-
ical commitments that mathematicians ought to have. This paper offers an inductive
account of why mathematical IBE tends to lead to mathematical truths.

Keywords Explanation · Mathematics · Platonism · Benacerraf · Imaginary
numbers · Ideal elements

1 Introduction

Compared to scientific explanation, with which philosophy of science has been
seriously engaged for at least seven decades, explanation in mathematics has been
little explored by philosophers. Nevertheless, mathematicians have long distinguished
mathematical proofs that explain why some theorem holds from proofs that merely
establish that the theorem holds. Fortunately,mathematical explanation has now begun
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to receive greater philosophical attention. I agree withMancosu (2008, p. 134) that the
topic’s “recent revival in the analytic literature is a welcome addition to the philosophy
of mathematics.”

In paying greater attention to explanation in mathematics, we should also consider
the sort of confirmatory reasoning that philosophers generally term “inference to the
best explanation” (IBE). If there are explanations not only in science but also inmathe-
matics, then presumably there is not only “inference to the best scientific explanation”,
but also “inference to the best mathematical explanation”. Philosophers (especially
scientific realists) standardly regard IBE in science as an important means by which
scientists confirm that certain as-yet-unobserved (and perhaps unobservable) entities
exist. That various propositions about some theoretical posit, if true, would nicely
explain some fact (that is already known and in which the posit does not figure) often
makes the proposed explanation more plausible—and the confirmation is stronger
insofar as the explanation would be better (or “lovelier”, as Lipton (2004) puts it).
This paper will examine whether and how IBE plays an analogous role in mathemat-
ics: in justifying the expansion of the mathematical domains to which mathematicians
are ontologically committed.1

Let’s see a small part of one example where IBE contributed to mathematicians’
warrant in expanding their ontological commitments—in roughly the same way as

1 This suggestion is not new. It is famously (though briefly) made by Gödel (1964, p. 265). In Sect. 2, I con-
trast my proposal with the accounts (whether of IBE in mathematics or of the non-deductive reasoning used
in mathematics to support the expansion of mathematicians’ ontological commitments) given by some other
philosophers. Pincock’s proposals are much nearer to mine than these other philosophers’ proposals are.
Like me, Pincock (2012, pp. 295–299) proposes that IBE in mathematics is used to support the expansion
of mathematicians’ ontological commitments. Like me, Pincock (2012, pp. 210–220) sharply distinguishes
this sort of IBE (where the fact being explained is purely mathematical) from IBE in mathematical indis-
pensability arguments in philosophy (where the explanandum is a fact about the physical world). As I am
about to do, Pincock (2012, pp. 270–275) discusses the expansion of mathematicians’ ontological commit-
ments to complex numbers—though whereas I emphasize the role of IBE arguments in underwriting this
expansion (with complex numbers providing the explanations of some facts exclusively about the reals),
Pincock emphasizes arguments from the ways that real-number functions could be extended to complex
numbers. Of course, these are not incompatible views of how the recognition of complex numbers was
historically underwritten; I believe that both of these sorts of considerations were influential.

I am not original in emphasizing the role played by explanatory considerations in the mathematicians’
expansion of their ontological commitments to include complex numbers. Thatmathematicians’ recognition
of complex numbers was motivated significantly by mathematicians’ awareness that complex numbers
would nicely explain various facts about the reals has been emphasized by, for instance, MacLane (1986,
pp. 118–119): “The complete acceptance of complex numbers came primarily in their many uses in helping
to understand other parts of Mathematics. … [T]here are phenomena with real numbers which can be
properly explained only with complex numbers.” Furthermore, whereas Pincock (2015, p. 13) appeals
to IBE in mathematics in connection with explanations of the unsolvability of the quintic, I would look
further back (and two exponential powers lower) for IBE in mathematics having historically underwritten
the expansion of mathematicians’ ontological commitments to include complex numbers. As Birkhoff and
MacLane (2010, p. 476) emphasize, it was an important discovery (the so-called “irreducible case” of the
cubic) that a general (unificatory, explanatory) formula for finding the real roots of cubic equations must use
complex numbers. (For more on this expansion of mathematicians’ ontological commitments to complex
numbers, see note 8; for more on Pincock’s views, see note 11.).

On the other hand, while my approach is not unprecedented, appeal to IBE in mathematics is hardly
uncontroversial. For instance, Dummett (1994, p. 13) writes that “there is nothing in mathematics that could
be described as inference to the best explanation.”.
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IBE has contributed to scientists’ warrant in doing so.2 Consider the fraction 1/(1 +
x2). Long division

1 – x2 + x4 – …

(1 + x2) √ 1

– (1+x2)

– x2

– (– x2 – x4)

x4

– (x4 + x6)

⁞

yields the Taylor series 1 − x2 + x4 − x6 + …. Plainly, for real number x, this
series converges only if |x|< 1. (When |x|> 1, each successive term’s absolute value is
greater than its predecessor’s, so the sum will oscillate in an ever-widening manner.)
Consider the fact that the two Taylor series

1/
(
1−x2

)
= 1 + x2 + x4 + x6 + . . .

1/
(
1 + x2

)
= 1−x2 + x4−x6 + . . . .

are alike in that, for real x, each converges when |x|< 1 but diverges when |x|> 1.
Why do these two series have the same convergence behavior? This similarity is
especially puzzling considering that at x = 1, 1/(1 − x2) becomes undefined whereas
1 / (1 + x2) behaves soberly. A proof that the first series converges if and only if
|x|< 1, combined with an entirely separate proof that the second series converges
if and only if |x|< 1, proves that the explanandum holds. But we may well suspect
such a proof of failing to explain why the explanandum holds. That is, we may well
suspect that the explanandum is no coincidence—that there is a common reason for
the two series’ common convergence behavior. If we expand our ontology beyond
real numbers to include imaginary numbers, then we discover the following theorem
(roughly, that every power series has a “radius of convergence” on the complex plane),
which supplies a common explanation:

Radius-of-convergence theorem: For any power series
∑

anzn (from n = 0 to
∞), either it converges for all complex numbers z, or it converges only for z =
0, or there is a number R > 0 (the series’ “radius of convergence”) such that the
series converges if |z| < R and diverges if |z| > R. (Spivak, 1980, p. 524)

2 Mypresentation here of this example closely followsmypresentations inLange (2010, pp. 329–331; 2017,
pp. 290–292, 331, 344–345; 2019, pp. 3–4, 13; forthcoming1:4–5; forthcoming2:8–9); I have previously
used this example in different places to make different points about explanation in mathematics. In Lange
(forthcoming1), I use it (in an informal, non-philosophical essay) to motivate the importance of IBE to
mathematics. But I have not previously devoted particular attention to the central philosophical topics of
this paper, such as the role of IBE in expanding the range of mathematicians’ ontological commitments.

123



  146 Page 4 of 26 Synthese          (2022) 200:146 

If imaginary numbers and real numbers are on an ontological par, then it is no coinci-
dence that the Taylor series for 1 / (1 − z2) and 1/(1 + z2) have the same convergence
behavior, since both functions become undefined at some point on the unit circle cen-
tered at the origin of the complex plane (the first function at z = 1, the second at z =
i).

That this is a genuine mathematical explanation is commonly emphasized by math-
ematicians themselves. As Spivak (1980, p. 528) says in his classic textbook, the radius
of convergence theorem “helps explain the behavior of certain Taylor series obtained
for real functions,” such as the two I just gave. Earlier in the book, Spivak had already
set the stage for this explanation; in introducing these two Taylor series, Spivak had
asked why they have the same convergence behavior:

Asking this sort of question is always dangerous, since we may have to settle for
an unsympathetic answer: it happens because it happens – that’s the way things
are! In this case there does happen to be an explanation, but this explanation is
impossible to give at the present time [that is, at the end of Chapter 23]; although
the question is about real numbers, it can be answered intelligently only when
placed in a broader context. (Spivak, 1980, p. 482).

The “broader context” is eventually supplied by imaginary numbers. They do not
appear in the explanandum (and the explanandum can be proved without them), but
if they have the same ontological status as the numbers figuring in the explanandum,
then they explain the explanandum in a “lovely” way (which cannot be done without
them). There are many similar examples. Mathematicians thereby used IBE to support
the expansion of their range of ontological commitment from the real numbers to the
complex numbers. This role played by IBE in mathematics is the subject of this paper.

InSect. 2, Iwill specifywhat itwouldbe for IBE tofigure inmathematical reasoning.
For instance, IBE need not be sufficient to justify the acceptance of somemathematical
claim; a mathematician who employs IBE need only regard a mathematical claim as
deriving some credibility from its potential explanatory power. I will also identifywhat
mathematical IBE adds to other forms of non-deductive reasoning that have sometimes
been thought to figure inmathematical practice. I will argue that IBE avoids an obstacle
to enumerative inductions in mathematics and that the complex numbers’ explanatory
potential is a stronger reason for recognizing them than an argument merely from
“their mathematical usefulness” (Nagel, 1979, p. 170). None of my arguments will
depend on any particular account of how explanatory proofs in mathematics differ
from non-explanatory proofs.

According to recent versions of the Quine-Putnam “mathematical indispensability”
argument, the role of mathematical objects in certain scientific explanations is good
evidence for these objects’ existence. In such a “Quinean IBE”, the explanandum
concerns the physical, spatiotemporal world, whereas in the mathematical IBE’s that
I am examining, the facts being explained are purely mathematical facts. In Sect. 3, I
will argue that this difference makes mathematical IBE’s invulnerable to some of the
most widely discussed objections to Quinean IBE’s.

However, this difference also makes mathematical IBE’s vulnerable to a challenge
that Quinean IBE’s do not face. A mathematical IBE is supposed to support an expan-
sion in mathematicians’ range of ontological commitment from the mathematics in
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the explanandum to the mathematics in the explanans. Hence, a mathematical IBE
presupposes that mathematicians are already committed to the ontological status of
the mathematics in the explanandum. Therefore, unlike Quinean IBE’s, mathematical
IBE’s cannot supply an argument for mathematical platonism without begging the
question (as noted by Baker, 2009, p. 613).

Whereas the “Quinean IBE” that I just mentioned is a philosophical argument for
a philosophical conclusion (mathematical platonism), the kind of IBE’s that I will
be studying are arguments in mathematics for mathematical conclusions (namely, for
mathematical explanations of some mathematical facts). In looking at mathematical
IBE’s, I am not aiming to argue that they support platonism or any other particular
philosophical account of the proper ontological commitments for mathematicians to
undertake. My concern is with the role that mathematical IBE’s play in justifying the
expansion of the proper ontological commitment in mathematics from some mathe-
matical domains to broader domains (e.g., from the reals to the complex numbers). I
do not maintain that an account of mathematical IBE’s reveals what that proper onto-
logical commitment actually is. It does not decide between platonism and its rivals.
Therefore, I see mathematical IBE’s as arguments that both platonist and various non-
platonist accounts (e.g., Aristotelian realist, fictionalist,…) should all recognize as
playing important roles in mathematical practice, just as all of these philosophical
accounts should recognize the distinction in mathematical practice between explana-
tory and non-explanatory proofs.

In short, platonists and their rivals disagree about the ontological commitments that
mathematicians ought to undertake. I am arguing that IBE in mathematics can help
to justify an expansion of those ontological commitments to a broader mathematical
domain—for instance (in the example we just saw), can help to justify mathematicians
in regarding all complex numbers as on a par with the reals. But (on my view) IBE
in mathematics does not show what ontological commitment this “par” involves, only
that the commitment should be the same for all of the complex numbers as for the
reals.

I will argue (in Sect. 3) that the recognition of mathematical IBE’s can play a
crucial role for both platonist and non-platonist philosophical accounts even though
there would have to be an independent argument for that account’s applicability to
the mathematical domain from which the mathematicians’ ontological commitments
are being expanded (e.g., an independent argument for platonism regarding the real
numbers). In particular, I will argue that an appeal to mathematical IBE underwrites a
response to Field’s (1989) version of Benacerraf’s (1973) dilemma regarding mathe-
matical knowledge. For platonism, this response amounts to an argument that the fact
that our beliefs regarding certain abstract mathematical objects are arrived at by math-
ematical IBE’s helps to explain why those beliefs are so accurate. I will contend that
analogous responses (also appealing to mathematical IBE) can be given to analogous
explanatory challenges facing non-platonist accounts.

These explanations appealing to mathematical IBE require some account of why
beliefs arrived at by mathematical IBE tend to be accurate. Of course, the same ques-
tion can be asked regarding IBE in science. In Sect. 4, I will argue that one promising
account of why IBE is a fairly good guide to truth in science also applies to mathemat-
ical IBE. On this account, we often have good inductive evidence (in science and math
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alike) that certain sorts of facts tend to have certain sorts of explanations, and these
expectations inform which potential explanations are “lovely”. I will also examine the
apparent differences between IBE in math and science regarding the prevalence of
brute facts and of the same fact’s having multiple explanations.

This paper hardly exhausts the philosophical questions raised bymathematical IBE.
As explanation in mathematics receives increased philosophical scrutiny, I hope that
some scrutiny accordingly falls on mathematical IBE.

2 What wouldmathematical IBE involve?

What would an “inference to the best explanation” in mathematics be an inference to?
What would a proof’s power to nicely explain confirm? Suppose, for instance, that
we want to explain why the two Taylor series (given in the previous section) have the
same convergence behavior. Suppose we formulate the radius-of-convergence gener-
alization and although we have not yet proved it, we notice that if it is true, then it
(or its proof) would nicely explain why the two Taylor series have the same conver-
gence behavior. By IBE (in the absence of other relevant considerations, such as rival
potential explanations and collateral relevant evidence or background knowledge), our
discovery of the generalization’s “potential explanatory power” (i.e., that it has power
to nicely explain, if it is true) should increase our confidence (to some degree) in the
generalization’s truth.3 Alternatively, suppose instead that we have already proved the
radius-of-convergence generalization by deriving it from the axioms of complex arith-
metic. Then (unless we have some doubts about the proof) the radius-of-convergence
theorem already possessesmaximal credibility. No room remains for us to increase our
confidence in it from recognizing that it nicely explains why the two Taylor series have
the same convergence behavior. In this case, what remains to be confirmed through
IBE?

The answer is that even if the radius-of-convergence theorem has already been
shown to follow from the axioms of complex arithmetic, those axioms have not them-
selves been shown to be explainers of various accepted facts exclusively about the
real numbers. In aiming to fit mathematical practice, every philosophical account of

3 Here is an example of such an IBE argument from the mathematics literature: “If a theory explains much
data, then perhaps the theory is true.…Are there a set of random facts that P �=NPwould help explain? Yes.
The obvious one: P �= NP explains why we have not been able to solve all of those NP-complete problems
any faster!” (Gasarch, 2014, p. 258) Thanks to Bill D’Alessandro for this example.

Also note the important parenthetical reference in the main text to IBE permitting relevant collateral
evidence and background knowledge to override explanatory considerations. IBE is not best understood
as some mechanical rule of confirmation. (This point has been emphasized even by van Fraassen (1989,
pp. 145–146), a notable critic of IBE.) Rather, IBE involves considerations of explanatory quality serving
as a guide (not the sole guide) to likeliness. Therefore, IBE requires that explanatory considerations be
combined with other information, which sometimes outweighs explanatory considerations or even renders
them irrelevant. Unfortunately, IBE is sometimes formulated as purporting to be a mechanical rule of
confirmation. For instance, Boyce (2021) shows that collateral information can produce counterexamples
to the following principle: If H is part of the “best explanation” of E and C is an indispensable part of that
explanation, then E confirms C. However, such counterexamples are accommodated by IBE when IBE is
understood in the way that I just mentioned.
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mathematics (e.g., platonism, formalism, structuralism, Aristotelian realism, fiction-
alism,…) ought to recognize the distinction between explanatory and non-explanatory
proofs in mathematics. These philosophical accounts (as well as various accounts of
explanation in mathematics) may differ on what is required for the axioms of some
expanded domain to yield an explanatory proof. At a minimum, whatever ontological
status is being accorded the mathematical fact being explained, that status needs to
be accorded the mathematical fact doing the explaining. What an IBE argument in
mathematics can confirm is that the potential explainer is an explainer and is on an
ontological par with what is being explained.

For instance, if the philosophical account takes real numbers to be platonistic
abstract entities, then for the axioms of complex arithmetic to explain facts about
the reals, the complex numbers must also all be platonistic abstract entities. Under
platonism, then, part of what the IBE confirms is that there are imaginary numbers
(as described by those axioms) as platonistic entities and hence on an ontological
par with the reals in the two Taylor series in the explanandum. Furthermore, even a
non-platonistic account must recognize a status that the axioms of complex arithmetic
must have in order for them to explain real-number facts—a status that mathematical
IBE’s can confirm. For instance, suppose that the real-number facts and the axioms of
complex arithmetic are facts about certain physical properties (or properties of those
properties), as on Aristotelian realism (Franklin, 2008). Alternatively, suppose they
are facts about certain fictional entities, as on fictionalism (where a given mathemati-
cal fact p is understood as roughly that if there had existed certain platonistic abstract
mathematical entities, then p would have held of them).4 Under these philosophical
accounts, the truth of these mathematical claims is a relatively small achievement (at
least compared to what their truth requires under platonism) and is even knowable
without using IBE in mathematics. Nevertheless, more than their truth is needed for
them to explain. For instance, the predicates figuring in the explanation must stand
for mathematically natural properties. A fact involving a gerrymandered, “gruesome”
(in the sense of Goodman’s (1955) “grue”), or arbitrarily disjunctive property cannot
explain since the entities possessing that property (or that would have possessed it, had
those entities existed) are not similar in virtue of possessing it. No proof employing
a non-natural property genuinely unifies the various cases falling under it, showing
that they all arise in the same way; such a proof gives only the misleading veneer of
unification, papering over different (natural) properties by using the same predicate to
cover instances of all of them.5 That the predicates figuring in the axioms of complex

4 Let me emphasize that even a fictionalist should recognize explanations in mathematics. The fact that p
would have been the case, had there been certain platonistic mathematical entities, can have explanatory
proofs and non-explanatory proofs. (Of course, fictionalism interprets those proofs as proceeding from other
mathematical facts understood in this same fictionalist way.).
5 I am invoking here the distinction betweenwhatArmstrong (1978, pp. 38–41) andLewis (1999, pp. 10–13)
call “natural” (or “sparse”) properties—that is, respects in which things may genuinely resemble one
another—on the one hand, and mere shadows of predicates (i.e., “abundant” properties), on the other hand.
For instance, an arbitrary disjunction of natural properties is not a natural property since, for instance,
being five grams or positively electrically charged is not a genuine respect in which objects may resemble
one another. For more on the distinction in mathematics between natural and non-natural properties, see
Corfield (2003), Lange (2017), and Tappenden (2008).
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arithmetic are mathematically natural properties can be confirmed by a mathematical
IBE.

Mathematical IBE’s thus have something to confirm even under if-thenist, fiction-
alist and other non-platonistic accounts of mathematics. For instance, consider the
fact that if all complex numbers existed as abstract platonistic objects, then it would
be no coincidence that the Taylor series for 1/(1 − z2) and 1/(1 + z2) have the same
convergence behavior. The fictionalist can embrace this fact (concerningmathematical
explanations) only if she regards certain complex-arithmetical properties as mathe-
matically natural so that in both 1/(1 − z2) and 1/(1 + z2) possessing these properties
(if various mathematical objects existed), these functions would be similar. (These
properties include, for instance, becoming undefined at some point on the unit circle
centered at the origin of the complex plane.)

IBE operates in mathematics if the radius-of-convergence theorem’s potentially
giving a nice explanation of the two series’ having the same convergence behavior
(over and above the theorem’s entailing that behavior) makes it more plausible that the
axioms of complex arithmetic explain this convergence behavior. IBE in mathematics
thereby parallels IBE in science. IBE does not require that we go so far as to believe that
the radius-of-convergence theorem explains the convergence behavior merely because
the theorem figures in our best candidate explanation. (In this respect, “inference to
the best explanation” is misleading terminology, as van Fraassen (1989, pp. 145–146)
and others have remarked.) There may be insufficient evidence to warrant believing
this explanation. IBE requires only that the quality of the potential explanation supply
it with a credibility boost (under certain epistemic background conditions) and that
the boost’s size reflect how well the radius-of-convergence theorem would explain the
convergence behavior. In this respect, IBE in math is like IBE in science; according
to Lipton (2004, pp. 58–63, 121), IBE in science has us take the “loveliness” of the
explanations that a hypothesis would supply (if true) as an important guide (but not
our sole guide) to the likeliness of the explanation that the hypothesis would provide.

Let’s compare this view of IBE in math to other views regarding the confirmation
of mathematical conjectures. It has often been recognized that mathematics incorpo-
rates hypothetico-deductive and other forms of non-deductive reasoning. For example,
Polya (1954) examines a host of mathematical cases involving induction by enumer-
ation, analogical reasoning, and other kinds of plausibility arguments. Putnam (1975)
sees positive instances as having confirmed the four-color map conjecture (before
it was proved). Neither Polya nor Putnam, however, mentions IBE as among (what
Putnam calls) the “quasi-empirical methods” in mathematics. In contrast, Kitcher
(1984) briefly acknowledges IBE in mathematics; having proposed that all explana-
tions (mathematical and scientific) involve unification, Kitcher takes IBE in math as
a means of confirming the axioms that entail a given mathematical fact and thereby
explain that fact by unifying it with the other facts that those axioms entail:

We accept new axioms … because by doing so, we can derive a large number
of antecedently accepted statements from a small number of statements. The
ability to do this is important to us because the unification of a field enhances
our understanding of it. (Kitcher, 1984, p. 218)

123



Synthese          (2022) 200:146 Page 9 of 26   146 

Maddy (1980) likewise mentions explanatory power as among the considerations that
may support a given axiomatization of set theory. Mancosu (2008) takes this one step
further; he interprets Feferman as “seem[ing] to think” that if results in one branch of
mathematics (e.g., concerning the natural numbers) “which call for an explanation”
have a potential mathematical explanation in terms of “more abstract entities” towhich
mathematicians are not already committed, then the potential explanation may supply
“good reason to postulate such abstract entities and to believe in their existence” (Man-
cosu, 2008, p. 139). This is roughly the form of IBE (under a platonist interpretation)
that I saw at work in the Taylor-series example.

Manders (1989) likewise investigates howmathematicians argued for the existence
of imaginary numbers. These arguments (on Manders’s view) appealed to the fact that
when thedomainof interest is expanded from the real numbers to the complexnumbers,
certain “solvability conditions” are satisfied (that is, all equations of a certain form
have solutions) in all caseswhere solvability is consistent with certain other constraints
(e.g., the commutativity of certain operations). Manders says that the simplification
thereby achieved supplies greater “understanding” of the original domain. By this, he
appears to mean that that the expanded domain exhibits greater unification because
various uniformities hold there (e.g., all numbers have square roots, all quadratic
equations have solutions) that had exceptions in the original domain. Manders does
not unpack this greater understanding in terms of additional why questions being
answerable in the expanded domain. On my view, the kind of “understanding” that
Manders emphasizes should not be identified with mathematical explanation, and
so the justification he alleges for domain expansion should not be identified with
IBE. In fact, the justification he alleges for domain expansion does not seem very
powerful; I see no obvious reason why the ontological status of some mathematical
objects is confirmed by the fact that they would enable certain “solvability conditions”
to be satisfied. I see no independent way to acquire evidence that those solvability
conditions are always satisfied.6 By contrast (as I will discuss in Sect. 4), in both
science and mathematics it often happens that before we have any plausible account
of why some known fact holds, we have good reason to expect that fact to have a
certain kind of explanation. Of course, our expectation may turn out to be mistaken.
But complex numbers cannot be responsible for the behavior of the reals unless they
are on an ontological par with the reals—whereas the complex numbers’ ontological
status seems independent of whether they would enable some “solvability conditions”
to be satisfied.

Some mathematical hypotheses have apparently been confirmed by enumerative
induction. For instance, Goldbach’s conjecture seems confirmed by the absence of
counterexamples among the many numbers that have been checked. But such confir-
mation is vulnerable to the objection (Baker, 2007) that the examined cases are all
numbers small enough for us to check (at least by computer). Confirmation of “All
F’s are G” by every examined F’s having been G is weakened insofar as we believe
that the examined F’s form an unrepresentative sample of all F’s. In contrast, as an
argument for extending our ontological commitments to all complex numbers, IBE

6 I take this to be part of the point behind Kitcher’s (1989, p. 564) rhetorical question: “Can we assume that
invoking entities that satisfy constraints we favor is a legitimate strategy of recognizing hitherto neglected
objects that exist independently of us?”
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does not face an analogous objection since IBE does not presuppose that the evidence
constitutes a representative sample. (That the cheese I left on the table each recent night
has disappeared is evidence of a mouse even if the recent nights are unrepresentative
in, e.g., being the only ones where I left cheese on the table.)

As we have seen, one point of similarity between IBE in science and in math is
that through each, we often justify extending the range of our ontological commit-
ments beyond those involved in accepting the facts being explained. There is another
important point of similarity. Just as we do not need to appeal to imaginary numbers
in order to prove that the two Taylor series exhibit a given convergence behavior,
so likewise for any scientific theory positing unobservable entities, there is a scien-
tific theory having the same implications regarding observable facts but positing no
unobservables (Hempel, 1965). However, just as the scientific theory that eschews
unobservables lacks the explanatory power of the scientific theory positing them, so
a pair of separate proofs (involving no imaginary numbers) of the two Taylor series’
convergence behaviors fails to explain why the two series are alike in their behavior.
Instead, the two separate proofs treat the series’ similarity in convergence behavior as
a “mathematical coincidence” —roughly speaking, as lacking a common explanation
(Lange, 2010, 2017). Hence, that the series’ convergence behavior can be deduced
without appeal to imaginary numbers does not weaken the confirmation that the imag-
inary numbers’ ontological status receives through IBE (since the imaginary numbers
are indispensable to the convergence’s “best explanation”).7

The imaginary numbers’ explanatory potential regarding facts about real numbers
was important in justifying the belief that imaginary numbers stand on an ontological
parwith the real numbers. Of course, IBEwas not the only kind of argument supporting
an ontological commitment to complex numbers. However, the complex numbers’
explanatory potential is especially powerful evidence for them.8 That a theoretical
posit in science is a calculational convenience may not be much evidence, since the
posit could instead be merely a convenient façon de parler. Likewise, that complex
numbers are mathematically useful in various ways may not count much. For instance,
that complex numbers can be given a geometrical interpretation shows that they will
not lead to contradiction, but it does little to confirm that they are ontologically on a
par with the reals (Kitcher, 1989, p. 564). By contrast, the explanatory potential of
complex numbers is more powerful evidence because complex numbers cannot be
responsible for the behavior of the reals unless they are on an ontological par with the
reals.9

7 Mancosu (2008, p. 140) also points out that an explanatory proof cannot be replaced with a proof that
avoids additional mathematical ontology without loss of explanatory power.
8 The case of the two Taylor series is just one ofmany examples where facts about complex numbers beyond
the reals were recognized as having the potential to explain facts exclusively about reals. For instance, Euler
(Elements of Algebra, Part II, §193) saw that complex numbers could explain why the only integral solutions
to the elliptic curve x3 = y2 + 2 are (x,y) = (3, ± 5).
9 It might be objected that frictionless planes, ideal gases, and so forth can help to explain the behavior of
actual physical objects even if they are not on an ontological par with those objects. In my view, however,
the explaining is not done by facts about actual frictionless planes (obviously) or even by facts about what
frictionless planes would have been like, had there been any. Rather, what explains are simply facts that
certain actual physical objects are certain ways. Since their being those ways makes them (to a sufficient
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3 Quinean IBE’s, mathematical IBE’s, and Field’s Benacerrafian
challenge

In this section, Iwill look at the contribution that an appeal tomathematical IBE’s could
make in responding to a notable epistemic challenge to platonism. However, I will be
arguing that our recognition of IBE’s role in mathematics cannot favor platonism over
its rivals. Furthermore, platonism will not be my only concern; I will argue that an
appeal to mathematical IBE’s can make similar epistemic contributions in the context
of other accounts of mathematics.

The “mathematical indispensability” argument associated with Quine (1951) and
Putnam (1971) aims to show that we are justified in believing in the reality of various
abstract platonistic mathematical objects. The argument is roughly that these objects
are indispensible to our best scientific theories and so the empirical evidence for those
theories thereby strongly confirms the reality of these objects. Recent versions of this
argument (Baker, 2005, 2009;Colyvan, 2001, 2007) aremore precise about the role that
a mathematical object must play in a scientific theory in order for empirical evidence
supporting the theory to confirm the object’s reality: the mathematical object must
play an indispensable explanatory role. This version of the indispensability argument
portrays it as a form of IBE.

This “Quinean IBE” involves mathematical objects figuring in scientific explana-
tions; the facts being explained are facts about concrete objects having causal relations
and existing in spacetime. In contrast, the IBE’s that I have been examining (“math-
ematical IBE”) involve mathematical objects figuring in mathematical explanations;
the facts being explained are mathematical facts. This difference makes mathematical
IBE invulnerable to some of the most widely discussed objections to the Quinean IBE.

One objection (e.g., Shapiro (2000, p. 220), cf. Pincock (2012, p. 211)) is that
mathematicians have been persuaded of the existence of imaginary numbers and other
entities not by their scientific utility, but rather on grounds internal to mathematics.
A mathematical IBE constitutes precisely such grounds. A second important objec-
tion is Field’s (1980, 1989) argument that there are “nominalistic” reformulations of
scientific theories—that is, theories having the same physical consequences as these
theories when standardly interpreted, but not requiring the truth of the mathematical
claims standardly employed. Hence, mathematics is not indispensable to scientific
theories, and so the Quinean IBE does not get started. Field’s objection does not apply
to mathematical IBE’s because the explanandum there is a mathematical fact, not a
fact about physical objects. That physics can manage by treating mathematical claims
as useful representational aids rather than as truth-apt does not show that mathematics
can manage in this way. Field (1980, p. 13) argues that the truth of a mathemati-
cal claim, added to a nominalistically formulated physical theory, makes no physical
predictions besides those made by the theory alone, and so Field concludes that if a
physical theory can be formulated nominalistically, then empirical evidence cannot
discriminate between that theory and one supplemented by commitment to mathe-
matical objects. The analogous argument regarding a mathematical theory rather than

Footnote 9 continued
degree of approximation) like frictionless planes, it is helpful to describe those objects in terms of what
frictionless planes would be like.
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a scientific theory is a non-starter: empirical evidence is not the principal court of
appeal in mathematical practice, and a mathematical proposition, added to some other
mathematical propositions, can obviously enable additional mathematical predictions
to be made.

A third reply often made to the “Quinean IBE” (e.g., Bueno, 2009, Melia, 1998;
Baker and Colyvan 2012 replies to it) is that even if mathematics is indispensable to
the explanations supplied by our best scientific theories, it does not play the right kind
of role in those explanations for the empirical evidence supporting those theories to
confirm the existence of mathematical objects. Mathematics serves only as a descrip-
tive or representational aid. As Melia (1998, pp. 70–71) argues, “mathematics is used
simply in order to make more things sayable about concrete things. And it scarcely
seems like a good reason to accept objects into our ontology simply because quanti-
fying over such objects allows us to express more things.” But even if we grant that in
scientific explanations, mathematics serves only to assist us in making claims about
physical objects, this objection to the Quinean IBE does not apply to mathematical
IBE’s.10 In science, the physical world is available to be what mathematics serves as
an aid in representing. But there is no obvious candidate for what mathematics serves
as a mere tool for representing in purely mathematical work. Even if mathematics in
a scientific explanation serves merely as an aid in representing facts about physical
objects, its role in an explanation in mathematics must be entirely different (or else
the explanation would not succeed); as merely a tool for representing physical facts,
mathematics cannot explain why some mathematical theorem holds. For facts about
complex numbers to genuinely explain facts about reals, complex numbers must be
on an ontological par with reals.

However, although mathematical IBE’s avoid some widely discussed objections
to the Quinean IBE, they also encounter an obstacle that the Quinean IBE does not
face. The Quinean IBE concerns explanations of facts about physical objects—fre-
quently, about observable objects—and those objects’ existence is taken for granted.
The Quinean IBE aims to show that we ought to have a similar ontological commit-
ment to the platonistic mathematical objects purportedly posited by the explanations
of facts about physical objects. In contrast, mathematical IBE’s concern explanations
of mathematical facts. In the Taylor-series example, the issue is whether to extend our
ontological commitments from the reals to complex numbers. So under platonism,
for instance, this mathematical IBE takes for granted the real numbers’ existence as
platonistic mathematical objects (figuring in the Taylor series in the explanandum).
But we cannot take for granted the existence of any abstract mathematical object if the
issue is whether to be mathematical platonists or non-platonists of some kind. So even
if a mathematical IBE justifies our according the same ontological status to complex
numbers as to reals, it cannot show that we are justified in believing in the existence of

10 One way to elaborate this objection to the Quinean IBE is that mathematical objects are not serving
as causes according to the proposed scientific explanation and so the evidence for that explanation does
not confirm their existence. This objection to the Quinean IBE would apply to the mathematical IBE since
the mathematics there is not describing causes of the explanandum (a purely mathematical fact having no
causes). However, this is not a good objection. Evidence for a scientific explanation often counts as evidence
for non-causes it posits. For instance, laws of nature (and features of spacetime structure) are not causes, are
often posited by putative scientific explanations, and are often confirmed by evidence for the explanation.
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complex numbers as abstract objects unless platonism has already been independently
established regarding the reals. In short, whereas the Quinean IBE aims to argue for
platonism, we cannot appeal to mathematical IBE’s in order to argue for platonism
over its rivals without begging the question.

The same point applies even if we are not platonists. Whatever our philosophical
account of mathematics, a mathematical IBE aims to justify the expansion of math-
ematical ontological commitments from one domain to another. But it cannot tell in
favor of what particular ontological commitment’s scope is being expanded; that is, it
cannot tell us whether we should be platonists or fictionalists or Aristotelian realists
or… regarding the mathematical domain from which the expansion is taking place.
(Recall fromSect. 1 that even fictionalistsmust regard the acceptance of an explanation
in mathematics as involving a certain kind of mathematical ontological commitment:
to the naturalness of certain mathematical properties.)

However, even if a mathematical IBE can underwrite only an expansion in our
ontological commitments from one mathematical domain to another, we should not
underestimate its importance. For example, a platonist might maintain that some rel-
atively narrow range of platonistic mathematical objects are epistemically accessible
by Quinean IBE’s, or by rational insight (Bonjour, 1998), or by direct perception
(Maddy, 1980, 1990), or by some other means. Other kinds of mathematical objects,
however, are too remote to be accessible in any of these ways. This problem could
be addressed by mathematical IBE’s underwriting the expansion of mathematical
ontological commitments from our independent knowledge of some narrow range of
platonistic mathematical objects. Without mathematical IBE’s, many parts of higher
mathematics that play no indispensable role in any scientific explanations, that even
persons with mathematical training cannot access by perception, and into which we
cannot have rational insight would become epistemically inaccessible. Mathematical
IBE’s would then nicely complement other means of acquiring knowledge of mathe-
matical abstract objects.

Analogous points apply under non-platonistic accounts. For example, an Aris-
totelian realist view (Franklin, 2008), according to which mathematics concerns
properties of (actual or merely possible) physical objects (and properties of those
properties, and…), faces the epistemic challenge that many mathematical properties
seem too far removed from what we can observe for us to have good reason to rec-
ognize them. But the “lovely” mathematical explanations that these properties would
allow us to give can (by mathematical IBE) provide evidence of instances of these
properties. In the same way, fictionalism and if-thenism should regard mathematical
IBE’s as helping to justify mathematicians in expanding the range of mathematical
properties they regard as natural. In this way, even under non-platonistic interpreta-
tions of mathematics, mathematical IBE’s play crucial roles—even if mathematical
IBE’s presuppose our having independent grounds for the ontological commitments
(of the relevant non-platonistic sort) regarding the mathematics figuring in the facts
being explained by the explanations that IBE confirms. Mathematical IBE’s expand
the range of justified ontological commitments in mathematics just as in science,
IBE’s justify scientists in expanding their justified beliefs from observable facts to
propositions concerning the unobservables explaining those facts. Both platonism and
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non-platonistic accounts are more defensible if they recognize mathematical IBE’s
because doing so allows them to account for some of our mathematical knowledge.

To appreciate that mathematical IBE’s could still play a crucial role in platonism’s
defense even if they presuppose an independent argument for platonism regarding
at least some initial, narrow range of mathematics, I will look at one very prominent
argument regarding platonism. In particular, I will argue that an appeal tomathematical
IBE can help us respond to Field’s version of Benacerraf’s (1973) dilemma regarding
mathematical knowledge. Field (1989, p. 26) says:

Benacerraf’s challenge … is to … explain how our beliefs about these remote
entities can so well reflect the facts about them. … [I]f it appears in principle
impossible to explain this, then that tends to undermine the belief inmathematical
entities, despite whatever reason we might have for believing in them.

Field’s point is that it counts against the plausibility of a certain body of beliefs that our
(alleged) tendency to be reliable in those beliefs is in principle impossible to explain,
and the abstract character of platonistic objects suggests that it would be in principle
impossible to explain our reliability regarding them. In contrast, even before we had an
account of how our perceptual beliefs are reliable, there was no in-principle obstacle to
such an account, since the objects of our perceptual beliefs enter into causal relations
with us. But

a realist view of mathematics involves the postulation of a large variety of aphys-
ical entities – entities that exist outside of space-time and bear no causal relations
to us or anything we can observe – and there just don’t seem to be any mecha-
nisms that could explain how the existence and properties of such entities could
be known. (Field, 1989, p. 230)

On Field’s view, then, there is an in-principle obstacle to explaining any tendency on
our part to have true beliefs regarding mathematical objects.

It seems to me that natural selection might explain why we have a tendency to
have true beliefs regarding certain very elementary mathematical facts. The tendency
to form correct mathematical beliefs of this kind is selectively advantageous. If a
creature sees two dangerous predators in front of her and three more behind her, then
she is more likely to survive long enough to have offspring if she believes that 2+ 3=
5 (and so concludes that there are five dangerous predators in total) than if she believes
that 2 + 3 = 0 (and so concludes that there are no dangerous predators in total). That
a mental faculty for arriving at such elementary mathematical truths would enhance
fitness seems indisputable, and that it has actually been selected for seems plausible.
As Sinnott-Armstrong (2006, p. 43) says pithily: “People evolved to believe that 2 +
3 = 5, because they would not have survived if they had believed that 2 + 3 = 4….
The same goes for the belief that wild animal bites hurt.”11

11 Clarke-Doane (2012, p. 314, 326) gives more references to biological and philosophical literature on
natural selection for a disposition to generate true simplemathematical beliefs. Pincock (2012, pp. 297–298),
in taking IBE in mathematics as having supported expansions in the range of mathematical domains to
which mathematicians have justified commitments (see note 1), also proposes a non-IBE rationale for the
commitments to (e.g.) ordinary arithmetic from which the expansion takes place.
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I acknowledge that the same selectively advantageous work performed by these
elementary beliefs about mathematical objects could have been performed instead by
beliefs that are not made true by platonistic objects. According to Clarke-Doane,

for any mathematical hypothesis that we were selected to believe, H, there is a
nonmathematical truth corresponding to H that captures the intuitive reason that
belief in H was advantageous… . By nonmathematical truth I mean … roughly,
a truth that does not imply the existence of a relevantly mind-and-language
independent realm of mathematical objects. When H is an elementary arithmetic
proposition, such as that 1+1=2, the relevant truths will typically be (first-order)
logical truths regarding objects in our environments (it is conceivable that they
would also sometimes be mereological or impure set-theoretic truths regarding
such objects). (Clarke-Doane, 2012, p. 332).

Perhaps this shows that a creature could have derived the same selective benefits with-
out having elementary beliefs about fairly small numbers—as long as she had various
beliefs about logical (or other kinds of) truths about physical objects and she could
employ those beliefs as easily aswe employ elementary beliefs about fairly small num-
bers. But that is not immediately relevant to responding to Field’s challenge. Field’s
challenge grants for the sake of argument that we have beliefs about platonistic objects
and argues that there is an in-principle obstacle to explaining their reliability. Field
(1989, pp. 26–27) likens his challenge to the challenge we would issue to someone
with beliefs “about the daily happenings in a remote village in Nepal” and who claims
these beliefs to be nearly all true “despite the absence of any mechanism to explain
the correlation between those belief states and the happenings in the village.” That
challenge grants that the individual has beliefs about the village. Insofar as such an
explanation is in principle impossible, there is reason to doubt that we have reliable
beliefs regarding the remote entities, since our reliability is not plausibly a brute fact.
One way to meet Field’s challenge, at least regarding elementary beliefs about fairly
small numbers, is to point out that if our ancestors were guided by their beliefs about
fairly small numbers, then they were likely to do better if their beliefs were true than
if their beliefs were false. Therefore, if a tendency to form true beliefs of this kind
is heritable, then there was plausibly selection for it. This selectionist explanation
would be an explanation of the kind that Field suspects is impossible in principle. It
helps to be right about the platonistic objects if we are using those beliefs to guide
our interactions with concrete objects—even if those interactions would have been
just as successful if we had instead been guided by certain beliefs that do not concern
platonistic objects (so that if we had used those other beliefs instead, then our being
right about the platonistic objects would have made no difference to our success).

In other words, this selectionist explanation is not undermined by the fact that a
creature without mathematical beliefs, but with various true nonmathematical beliefs
(of the sort Clarke-Doane mentions), could have thereby derived the same selective
benefits that she would have derived from having true elementary beliefs about fairly
small numbers. Let’s put the point contrastively. The selectionist explanation rele-
vant to responding to Field’s challenge explains why we have true rather than false
elementary beliefs about fairly small numbers (by having beliefs like 2 + 3 = 0).
It does not purport to explain why we have those true beliefs rather than no beliefs
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at all about numbers but instead various nonmathematical beliefs (of the sort Clarke-
Doanementions). This specificity to a particular contrast class is typical of selectionist
explanations. For instance, a simple selectionist explanation might explain why some
butterfly species has camouflage rather than no protective coloration or any other
device to discourage predation, despite not explaining why the butterfly has camou-
flage rather than abad taste or someother device to discouragepredation.A selectionist
account’s failure to answer a why question involving the latter contrast class does not
prevent it from answering a why question involving the former contrast class.

The selectionist account does not show that our elementary beliefs about fairly
small numbers are true. As far as this argument is concerned, those beliefs could be
false—not because 2 + 3 = 0, but rather because they posit abstract mathematical
objects that do not exist. That our ancestors were nevertheless successful when they
were guided by those beliefs could be explained by nonmathematical truths of the
sort that Clarke-Doane mentions. (That is his point in mentioning them.) Even so, the
selectionist account can address Field’s challenge as far as elementary beliefs about
fairly small numbers are concerned (though see just below). That challenge begins by
presupposing that we have beliefs about these mathematical abstracta and that there
are such things (just as someone might have beliefs about a remote Nepalese village
that actually exists). The challenge is to explain how (except by unlikely good fortune
or as a brute fact) we managed to capture the facts about these mathematical things.
The mechanism I have mentioned is natural selection: a false belief about these things
would be selectively disadvantageous (in the absence of a true non-mathematical belief
that takes over its role in guiding action).

I do not mean to suggest that this appeal to natural selection suffices as it stands to
explain why we have true beliefs about “remote” platonistic entities. There remains
the matter of explaining why it is selectively beneficial for us to have accurate rather
than inaccurate beliefs about the small real numbers taken as platonistic entities.
Why should our projects tend to go better if we get the facts right about platonistic
entities (any more than our projects would tend to go better if our beliefs about a
remote Nepalese village were correct rather than incorrect)? Platonism needs to give
an account of how ordinary physical objects relate to these abstract entities (perhaps
modeled on how particulars relate to the universals they instantiate).

The point of this excursion into selectionist explanations is that nothing like such
an account could respond to Field’s challenge regarding mathematical facts beyond
the most elementary arithmetical and geometrical ones. Our remote ancestors had no
beliefs about imaginary numbers or projective geometry’s points at infinity—and even
if they had had such beliefs, their accuracy would have bestowed no selective benefits
in our ancestors’ rude conditions. So the reliability of our beliefs regarding those
objects cannot be explained by the selective advantages thereby afforded. By contrast,
that our beliefs regarding these mathematical objects are arrived at by mathematical
IBE’s might explain why our beliefs regarding these mathematical objects are so
accurate. This explanation (as we saw earlier) presupposes some independent account
of the accuracy of our beliefs regarding the explanandum.We have just seen a possible
selectionist account of our accuracy there. But even with that selectionist account, it
remains crucial to add (in replying to Field’s challenge) that we used mathematical
IBE’s to arrive at someof ourmathematical beliefs (such as those concerning imaginary
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numbers). The selectionist account cannot be generalized to cover the accuracy of our
beliefs regarding the mathematical objects figuring in many of our best mathematical
explanations.

In short, an account appealing to mathematical IBE’s would perfectly complement
a selectionist account. That mathematical IBE’s (unlike the Quinean IBE), even if
successful, could underwrite no more than expansions in our ontological commitment
from (under platonism) some mathematical objects to others does not make an appeal
to mathematical IBE’s dispensable. Rather, it might play an important role in account-
ing (under platonism) for our mathematical knowledge. An appeal to mathematical
IBE’s appears to pair nicely with arguments (such as the selectionist account) that
are applicable only to a very narrow range of mathematical objects—but a range that
includes the mathematical objects figuring in the explananda of some mathematical
IBE’s.

Field himself briefly mentions a possible selectionist reply to his version of Benac-
erraf’s dilemma:

…the idea would be that evolutionary pressures (biological and/or cultural ones)
have led us to find initially plausible thosemathematical claimswhich are empir-
ically indispensable, and that this gives all the explanation of the correlation
between our judgements and the mathematical facts that we should want. (Field,
1989, p. 29)

He says that he’s “suspicious about this line of response…to the Benacerrafian chal-
lenge” (p. 29). One of his “doubts” about it

is that the amount of mathematics that gets applied in empirical science (or
indeed, in metalogic and in other areas where mathematics gets applied) is
relatively small. This means that only the reliability of a small part of our math-
ematical beliefs could be directly explained by the proposal of the previous
paragraph. To be sure, one could try to use the reliability of our beliefs in this
relatively small part of mathematics to ‘bootstrap up’ to the reliability of larger
parts, by hypothetico-deductive inference within mathematics…But I think that
there is substantial room to doubt that such inferences are all that powerful: too
many different answers to questions about, say, large cardinals or the continuum
hypothesis or even the axiom of choice work well enough at giving us the lower
level mathematics needed in science and elsewhere. (Field, 1989, p. 29)

Of course, such bootstrapping is exactly what I am suggesting—but by mathematical
IBE rather than hypothetico-deductively. By requiring the explanation of some fact,
not merely its deduction, IBE supplies a stronger reason for extending our ontological
commitments than hypothetico-deductivism can—whether in science or in mathemat-
ics. Furthermore, because explanation is a higher bar than deduction, we can grant
Field’s remark that several different answers to questions about certain mathematical
objects such as large cardinals “work well enough at giving us”—at entailing—“the
lower level mathematics needed in science and elsewhere”. It does not follow that
these answers all supply equally good explanations of that mathematics. It is a famil-
iar feature of science that explanatory power helps to resolve underdetermination of
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theory by evidence (e.g., Kitcher, 1993, p. 155). For instance, Tychonic and Coperni-
can astronomical models worked equally well at predicting relative planetary positions
(the models being empirically equivalent in this regard), but the Copernican model
was enormously superior in its explanatory potential (Kitcher, 1993, p. 211, 254–255).
Of course, it could turn out that several different answers to questions about large car-
dinals would (if true) supply equally “lovely” explanations. In that case, perhaps we
must remain forever ignorant of the facts about those objects.

An appeal to mathematical IBE, then, is not made dispensable by a selectionist
reply to the “Benacerrafian challenge”. Rather, mathematical IBE’s strengths and
weaknesses nicely complement those of a selectionist account. Part of Benacerraf’s
challenge is to understand howplatonisticmathematical objects could be epistemically
accessible to us. Mathematical IBE might give us one means of access to them.

4 Why is explanatory quality a good guide to truth?

According to the previous section, the fact that mathematicians use IBE to expand
the range of their ontological commitments could help to explain why the beliefs at
which they arrive in this way are so accurate. As we saw, this explanation requires
some account of mathematicians’ accuracy in their prior range of ontological com-
mitments (whether to platonistic entities or not); that is, it requires some explanation
of mathematicians’ accuracy in their ontological commitments regarding the mathe-
matical facts that mathematicians are trying to explain (e.g., a fact about real-number
Taylor series). Additionally, for mathematicians’ use of IBE in expanding their range
of ontological commitments to help explain why the beliefs at which they arrive are
so accurate, something would need to explain why beliefs arrived at by mathematical
IBE’s tend to be accurate. This is the challenge I will address in this section.

We face the same challenge regarding scientific IBE’s: Why does a scientific the-
ory’s power (if that theory is true) to nicely explain a given fact, over and above the
theory’s entailing (or probabilifying) that fact, make that theory more likely to be true
(in the absence of collateral information that overrides explanatory considerations)?
Of course, some philosophers (e.g., van Fraassen, 1980, 1989) have denied that a sci-
entific theory’s potential explanatory power supplies evidence of its truth. But this is
a minority view. Let’s see whether an explanation of scientific IBE’s reliability might
carry over to mathematical IBE’s.

One promising account of why in science the power to give nice explanations is a
fairly good guide to truth begins by noting that even before we have found a plausible
explanation of some fact, we often believe justly and accurately that the fact has an
explanation and we often justly have a fairly accurate idea of its explanation’s general
features. These are the features that we regard in this case as contributing to a potential
explanation’s quality—what Lipton (2004) calls its “loveliness”. For instance, suppose
that our car suddenly starts tomakeweird sounds, to emit smoke, and to stall frequently.
Even if we have no idea precisely why it is doing these things, we typically have good
reason to believe that there is some explanation (i.e., that these are not brute facts) and
that the explanation ascribes these various phenomena to a common cause. Having this
feature would then help make a proposed explanation “lovelier” (better). Of course,
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we cannot be certain that the events have a common-cause explanation; the reason
for the stalling might in fact have nothing to do with the reason for the sounds, and
these two reasons might have just coincidentally appeared simultaneously. But often
in cases like this, the various symptoms have a common cause—and we have good
reason to believe that they do before we have identified that cause. That reason derives
from our past experiences with various other, similar events (not necessarily involving
cars or even other manufactured objects) and the kinds of explanations that we have
discovered those events to have.

By the same token, if various languages share some feature, thenwe often have good
reason to expect that this commonality has an explanation and, in particular, that it
arises from some other feature that those languages share (such as a common ancestral
language, external influence, or physiological feature shared by their speakers). We
have good inductive evidence from our discoveries of explanations in other, similar
cases that the languages’ commonality is likely to have a common explanation. (Once
again, this expectation on our part could turn out to be mistaken, but often it is not.)
IBE is a good guide to the truth in such cases because we tend to have good inductive
grounds for some accurate expectations regarding the explanation of the languages’
similarity, and those general features that we thereby expect the explanation to pos-
sess are the traits that we regard in this case as enhancing a potential explanation’s
loveliness. In the case of the languages, we justly regard a potential explanation as
lovelier insofar as it attributes a similarity in the languages to a common explainer.12

I have focused on this particular loveliness-enhancing feature because it is also
exhibited by the mathematical explanation we saw earlier: the reason why the two
Taylor series have the same convergence behavior. That explanation attributes this
similarity to another similarity in the two functions undergoing Taylor expansion:
that they both become undefined at the same distance from the origin of the com-
plex plane.13 Before mathematicians knew this explanation, they had good reason for
having considerable confidence that the two series’ common convergence behavior
has an explanation that traces this similarity to some other, as yet unknown similarity
in the two functions. That is because mathematicians had already discovered a great
many similar mathematical facts to have mathematical explanations of this sort. This
evidence confirmed the existence of a similar sort of explanation in the case of the
two Taylor series and made this feature loveliness-enhancing in this case. Before they
discovered the explanation of the two Taylor series’ common convergence behavior,
mathematicians had expectations regarding what sort of explanation there is, and those
expectationswere justified in an internalist sense: the evidence supporting these expec-
tations (consisting of other mathematical explanations) was epistemically available to
mathematicians.

12 Lange (forthcoming3) presents an approach along these lines as justifying IBE in science.
13 My own account of explanation in mathematics (Lange, 2014, pp. 506–507; 2017, pp. 254–268; 2018,
pp 1296–127; 2019, pp. 12–13; forthcoming1:3) emphasizes that many (though not all) explanatory proofs
derive their explanatory power by tracing a salient similarity among the cases in the explanandum back
to some analogous similarity identified by the explanans. In this paper, I have no need to presuppose that
my account correctly identifies the source of these proofs’ explanatory power. It suffices that this feature is
often loveliness-enhancing.
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Here is an example of the kind of confirming evidence supplied by other mathe-
matical explanations.14 Take an ordinary calculator keyboard (see figure).

7 8           9
4 5           6
1 2           3

We can form a six-digit number by taking the three digits on any row, column,
or diagonal on the keyboard in forward and then in reverse order. For instance, the
bottom row taken from left to right, and then right to left, yields 123,321. There are
sixteen such “calculator numbers”: 123,321; 321,123; 456,654; 654,456; 789,987;
987,789; 147,741; 741,147; 258,852; 852,258; 369,963; 963,369; 159,951; 951,159;
357,753; and 753,357. As you can easily verify (with a calculator!), every one of these
numbers is divisible by 37. Is this “calculator-number regularity” a coincidence (as
the title of a recent Mathematical Gazette article asks)?15 In other words, does the
calculator-number regularity have an explanation and, if so, what is it?

It turns out to have an explanation given by a proof that proceeds from a property
shared by each of these numbers precisely because they are calculator numbers. Here
is such an explanation:

[The calculator-number regularity] is no coincidence. For let a, a + d, a + 2d be
any three integers in arithmetic progression. Then
a.105 + (a + d).104 + (a + 2d).103 + (a + 2d).102 + (a + d).10 + a.1
= a(105 + 104 + 103 + 102 + 10 + 1) + d(104 + 2.103 + 2.102 + 10)
= 1111111a + 12210d = 1221(91a + 10d).
So not only is the number divisible by 37, but by 1221 (= 3 x 11 x 37) (Nummela,
1987, p. 147)

This proof exploits the fact that every calculator number can be expressed as 105a +
104(a + d) + 103(a + 2d) + 102(a + 2d) + 10(a + d) + a where a, a + d, a + 2d are
three integers in arithmetic progression. These three integers, of course, are the three
digits on the calculator keypad that, taken forwards and backwards, generate the given
calculator number. Hence, this explanation traces the calculator-numbers’ similarity
in being divisible by 37 to another property they share. It is a lovely explanation.

Mathematicians have discovered many similar cases where the reason why appar-
ently disparate mathematical cases possess a common property turns out to be because
of some other commonality running through them. Considering this evidence, mathe-
maticians (even mathematics students reading Spivak’s textbook and drawing on their
own mathematical experience) are justified in expecting the common convergence
behavior of the two Taylor series to be explained by some other (as yet unidentified)
feature shared by the two functions. Therefore, a potential explanation is lovelier by
virtue of attributing the common convergence behavior to another property that the

14 In my presentation of this example, I closely follow my previous discussions of it (Lange, 2010,
pp. 308–309; 2014, pp. 488–489; 2017, pp. 276–279, 286, 353–356; forthcoming2:15–16). I originally
learned about it from Roy Sorensen.
15 The article appears (unsigned, as a “gleaning”) on p. 283 of the December 1986 issue.
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two functions share. (Once again, this explanation of mathematical IBE’s accuracy
does not presuppose platonism; even a fictionalist account would have to recognize
mathematicians as being justified in drawing on their prior knowledge ofmathematical
explanations to inform their expectations about as yet undiscovered explanations.)

In sum, mathematical IBE is a good guide to the truth because mathematicians are
frequently able to anticipate accurately which mathematical facts have explanations
and what sorts of explanations they have. These expectations tend to be accurate
because they are arrived at inductively from mathematicians’ knowledge of other
mathematical explanations. These expectations inform judgments of which potential
explanations are lovelier.

Of course, since mathematicians arrive at their expectations inductively, those
expectations sometimes turn out to be mistaken; for instance, mathematical facts that
appear likely to have explanations sometimes turn out to have none.16 Furthermore,
since this account of mathematical IBE’s reliability presupposes the reliability of a dif-
ferent kind of ampliative reasoning in mathematics, it is perhaps not a full explanation
of mathematical IBE’s reliability. However, to solve the Humean problem of induction
(whether in science or in mathematics) is certainly beyond the scope of this paper!
Moreover, in explaining mathematical IBE’s reliability by appealing to the reliability
of another kind of inductive reasoning, this proposal is not unique to mathematics; a
similar account could be given of why scientific IBE is reliable.17 For an account to
make mathematical IBE’s reliability no more mysterious than the reliability of other
forms of ampliative reasoning in mathematics—and no more mysterious than scien-
tific IBE’s reliability—constitutes some progress toward explainingwhymathematical
IBE is reliable. It makes IBE’s reliability in mathematics considerably less mysterious
than it would be for tarot cards, for instance, to be reliable in mathematics.

This proposal for explaining why IBE tends to lead toward the truth in math and sci-
encemight appear to suggest that IBE can be deployedmuch less often inmathematics
than it can in science. In science, we believe that virtually all facts have explanations;
only the fundamental laws of nature and perhaps certain other, very special facts (per-
haps the dimensionality of spacetime or the universe’s initial conditions) are brute. In
contrast, it may well be that only certain very special mathematical facts have explana-
tions. An ordinary mathematical fact may have a derivation from the relevant axioms,

16 For example, it is just a coincidence that 31, 331, 3 331, …, and 33 333 331 are all prime. (The
next number in the sequence is composite.) Similarly, consider these two Diophantine equations (that is,
equations where the variables can take only integer values):

2x2(x2 − 1) = 3(y2 − 1)
and
x(x − 1)/2 = 2n − 1.
As it happens, each equation has exactly the same five positive solutions for x: 1, 2, 3, 6, and 91 (Guy,

1988, p. 704). Mathematicians believe that this is just a coincidence—that there is no explanation. (I gave
this example in Lange (2010, p. 316; 2017, pp. 278–279, 289; forthcoming2:9).).
17 My proposed account of why potential explanatory loveliness is a good guide to truth (see note 12) is
in the spirit of Sober’s (1990) account of why simplicity is a good guide to truth: because the background
beliefs that guide us when we are being guided by simplicity are true. (For instance, simpler phylogenetic
trees posit fewer mutations, and we know that mutations are rare, so in being guided by simplicity in arriving
at phylogenetic trees, we tend to be guided toward the truth.) The accuracy of those background beliefs is,
in turn, no great mystery (bracketing Hume’s problem) considering that they were arrived at inductively.
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but perhaps that derivation is a mathematical explanation only in special cases. Per-
haps the only mathematical facts that have explanations (over and above proofs) are
mathematical facts exhibiting some striking feature—those revealing some striking
symmetry, for instance, or identifying something shared by otherwise apparently dis-
parate cases (as in the calculator-number example).18 For instance, it may make no
sense to ask why 31 is prime (insofar as this question asks for something over and
above a proof that it is prime), whereas it may make sense to ask why 31, 331, 3331,
33,331, …, 33,333,331 are all prime (where this question asks for something other
than a separate proof of each number’s primeness). If any of this is correct, then the
cases where mathematicians are able to use their past experience to confirm that a
given mathematical fact has an (as yet unknown) explanation may be very special,
whereas for nearly every fact that scientists encounter, they are entitled to expect it to
have an explanation.

I can embrace this line of thought; perhaps IBE can be deployed less often in
mathematics than in science. But this difference should not be exaggerated. For one
thing, it does not show that when IBE is applicable in mathematics, it is typically
weaker than IBE in science. Even if a mathematical fact must be pretty special for
there to be a distinction between its explanation and its mere proof, nevertheless for
such a mathematical fact (for which no explanation has yet been found), there may
typically be significant evidence that it has an explanation with various features. By
IBE, a mathematical conjecture might then derive some significant credence from
its potential to offer such a lovely explanation. Furthermore, even if nearly every
scientific fact has an explanation, it may be that only special scientific facts have
explanations with various special properties. For instance, the fact that Mars, Jupiter,
and Saturn all exhibit retrograde motion in the night sky has an explanation involving
a common cause: that Earth orbits the Sun inside these other planets’ orbits. But there
are a host of facts about the solar system having no unifying explanation, such as
Mars’s, Jupiter’s, and Saturn’s masses (or their volumes, axial rotation rates, numbers
of moons, distances, and even existences). Perhaps in both science and math, certain
further evidence must be present for IBE to underwrite awarding greater credence to
hypotheses that would (if true) supply explanations involving common explainers.

Another apparent difference between IBE in science and math concerns the same
fact having multiple explanations. In science, it might seem, a given fact typically has
a single explanation. For instance, suppose that my car’s sudden tendencies to stall,
to smoke, and to produce weird sounds have a common cause in some malfunction
somewhere in the car’s internal mechanism. Once we have found that explanation, we
do not continue to seek other explanations of the car’s behavior; having accounted
for the car’s symptoms, there is no call for another explanation of those symptoms.
In contrast, even after some mathematical fact has been explained, mathematicians
standardly seek and welcome additional explanations of it. New explanatory proofs
can provide new sorts of payoffs, including new theorems and proof strategies and new
insights. Mathematical IBE can award greater credence to a mathematical conjecture

18 This is true on my account of explanation in mathematics (see note 13). Recall Spivak’s (1980, p. 482)
remark (quoted in Sect. 1) acknowledging that a mathematical fact may turn out to have no explanation.
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by virtue of its power (if true) to nicely explain some fact even after that fact has
already been explained.

I am not convinced that this apparent difference between scientific and mathemat-
ical IBE is a genuine difference. I agree that mathematicians seek new proofs (even
new explanations) of theorems that have already been explained. But oftentimes sci-
entists also seek additional explanations of facts that have already genuinely been
explained—and for many of the same reasons as mathematicians do. For instance, in
science, a fact that has been explained relative to one contrast class may not yet have
been explained relative to another contrast class. To use a canonical example: that
Jones had latent untreated syphilis and Smith did not might explain why Jones rather
than Smith got paresis, but in view of the rarity of paresis even among those with latent
untreated syphilis, we might still want to know why Jones got paresis rather than not
contracting it. When mathematicians welcome multiple explanations of the same fact,
the different explanations may place the fact in different contrast classes. For instance,
an account of why a given method works rather than fails to solve a given problem
may not explain why the method works in that case and fails in an apparently similar
case rather than working in both.

Here is another example.19 Let the explanandum be the fact that the derivative at x
= a of the sum of infinitely many terms, each differentiable at x = a, does not always
equal the sum of the terms’ derivatives at x = a. A proof may explain why this result
obtains rather than the derivative of the sum always equaling the sum of the derivatives.
But even with this proof, we may still not have explained why the sum of infinitely
many terms is different in this respect from the sum of finitely many terms (which
always equals the sum of the terms’ derivatives). Different contrast classes call for
different explanations, whether in science or in math.

Besides the differences between contrast classes, there are many other reasons why
science sometimes seeks multiple explanations of the same fact. One explanation may
be “deeper” than another. To explain why a given gas’s pressure rose, we may cite the
fact that the gas was heated while its volume was held fixed and the law that any gas’s
pressure riseswhen it is heatedwhile its volume is held fixed. This explanation does not
keep us from welcoming a deeper explanation, such as one that replaces the law with
the kinetic-molecular theory of gases and the dynamical theory of heat. This deeper
explanation connects the gas’s behavior to other gas phenomena explained by the same
two theories. Different explanations of the samemathematical fact may likewise reveal
the explanandum’s connections to different sets of other facts, perhaps from different
branches of mathematics. This is an important reason why one explanation of a given
theorem does not exclude another.

In addition, a mathematical fact used to explain some theorem may itself be
explained by another explanation of that theorem. Similarly, even when we have
already identified the malfunction in the car’s internal mechanism that explains the
car’s symptoms, we may still use IBE to award additional credence to a theory by
virtue of its power (if it is true) to explain nicely why this malfunction in the car’s
internal mechanism occurred and hence why the symptoms occurred. In both math

19 In (Lange, 2018, pp. 1288–1290), I gave this example for a different purpose.
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and science, IBE can be used to judge among rival potential additional explanations
of a fact for which an explanation has already been found.

5 Conclusion

I have argued that mathematical IBE’s can support an expansion in the range of mathe-
maticians’ ontological commitments, just as scientific IBE’s can support an expansion
in the range of scientists’ ontological commitments. Both platonist and non-platonist
accounts of mathematics should recognize IBE as playing this role in mathematics,
even if these accounts disagree about mathematicians’ proper ontological commit-
ments.

For instance, Newton used an IBE to confirm that there exists a single force that
is responsible for both keeping the Moon in its orbit and causing a body near Earth’s
surface to fall. Newton noticed that the strength (per unit mass) of the downward force
on a terrestrial falling body is the same as the strength (per unit mass) of the Earth-
directed force causing the Moon’s motion once the force on the Moon is extrapolated
(by its posited inverse-square dependence on distance) to its strength at the Earth’s
surface. Newton believed that the best explanation of the two forces’ having the same
strength is that they are the same force:

And therefore that force by which the Moon is kept in its orbit, in descending
from the Moon’s orbit to the surface of the earth, comes out equal to the force
of gravity here on earth, and so … is that very force which we generally call
gravity. (Newton, 1999, p. 804)

Thebest explanation of this similarity between the forces on theMoon andon terrestrial
falling bodies is that they have a common explanation: they are the same force.

Just as Newton used IBE to justify adding the universal inverse-square gravitational
force to our ontology, so likewise (I have argued) IBE is used inmathematics to confirm
that new elements should be added to mathematical ontology. The two Taylor series I
have discussed have the same convergence behavior just as the two forces discussed
by Newton have the same strength. The existence of the universal inverse-square
gravitational force that Newton posited is confirmed by its potential to provide a lovely
explanation of the fact that the forces on theMoon and on terrestrial falling bodies have
the same strength. Likewise, that all complex numbers exist on an ontological par with
the reals (whatever that “par” ontological status is) is confirmed by the potential of
complex arithmetic to provide a lovely explanation of the fact that the twoTaylor series
have the same convergence behavior. In each case, IBE underwrites our regarding the
evidence as confirming the existence of a common explainer of what would otherwise
be a puzzling coincidence.
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