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Philosophers who regard some mathematical proofs as explaining why the-
orems hold, and others as merely proving that they do hold, disagree sharply
about the explanatory value of proofs by mathematical induction. I offer an
argument that aims to resolve this conflict of intuitions without making
any controversial presuppositions about what mathematical explanations
would be.

1. The problem

Proposed accounts of scientific explanation have long been tested against
certain canonical examples. Various arguments are paradigmatically expla-
natory, such as Newton’s explanations of Kepler’s laws and the tides,
Darwin’s explanations of various biogeographical and anatomical facts,
Wegener’s explanation of the correspondence between the South American
and African coastlines, and Einstein’s explanation of the equality of inertial
and gravitational mass. Any promising comprehensive theory of scientific
explanation must deem these arguments to be genuinely explanatory. By
the same token, there is widespread agreement that various other arguments
are not explanatory – examples so standard that I need only give their famil-
iar monikers: the flagpole, the eclipse, the barometer, the hexed salt and so
forth. Although there are some controversial cases, of course (such as ‘expla-
nations’ of the dormitive-virtue variety), philosophers who defend rival
accounts of scientific explanation nevertheless agree to a large extent on
the phenomena that they are trying to save.

Alas, the same cannot be said when it comes to mathematical explanation.
Philosophers disagree sharply about which proofs of a given theorem explain
why that theorem holds and which merely prove that it holds.1 This kind of
disagreement makes it difficult to test proposed accounts of mathematical
explanation without making controversial presuppositions about the phe-
nomena to be saved.
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1 Resnik and Kushner (1987: 146), among others, ‘have doubts that any proofs explain’

insofar as ‘explaining’ involves something other than merely supplying information that is

relevant to our interests in the given context, or perhaps doing so in a systematic way.
However, I believe that detailed case studies, such as those by Hafner and Mancosu

(2005), decisively refute Resnik’s and Kushner’s (1987: 151) claim that ‘[m]athematicians

rarely describe themselves as explaining’ and fail in practice to distinguish between expla-
natory and non-explanatory proofs.



One especially striking disagreement concerns the explanatory power of

proofs that proceed by mathematical induction.2 Some philosophers appear
quite confident that these arguments are generally explanatory, even in the

face of other philosophers who appear equally confident of their intuition to

the contrary. Very little in the way of argument is offered for either view. The
face-off is philosophically sterile.

To provoke your intuitions, consider the following two typical proofs by
mathematical induction:

Show that for any natural number n, the sum of the first n natural numbers

is equal to n(n + 1)/2.

For n = 1, the sum is 1, and n(n + 1)/2 = 1(2)/2 = 1.

If the summation formula is correct for n = k, then the sum of the
first (k + 1) natural numbers is [k(k + 1)/2] + (k + 1) = (k + 1)[(k/2) + 1] =

(k + 1)(k + 2)/2, so the summation formula is correct for n = k + 1.

Show that for any natural number n, the sum of the squares of the first n
natural numbers is equal to n3/3 + n2/2 + n/6.

For n = 1, the sum is 1, and n3/3 + n2/2 + n/6 = 1/3 + 1/2 + 1/6 = 1.

If the summation formula is correct for n = (k� 1), then the sum of the

squares of the first k natural numbers is (k� 1)3/3 + (k� 1)2/2 +
(k� 1)/6 + k2 = 1/3(k3 – 3k2 + 3k – 1) + 1/2(k2 – 2k + 1) + 1/6(k – 1) + k2

= k3/3 – k2 + k2/2 + k2 + k – k + k/6 – 1/3 + 1/2 – 1/6
= k3/3 + k2/2 + k/6, so the summation rule is correct for n = k.

Proofs like these seem to provoke strong intuitions among some philoso-

phers. For example, Kitcher writes:

Suppose I prove a theorem by induction . . . It would seem hard to deny
that this is a genuine proof. . . . Further, this type of proof does not

controvert Bolzano’s claim that genuine proofs are explanatory;

. . . the proof explains the theorem. (1975: 265)

Regarding the first proof by mathematical induction that I gave above, along
with a proof by mathematical induction that the sum of the first n odd

numbers (for any natural number n) is n2, Brown writes

In the two number theory cases above, a proof by induction is probably
more insightful and explanatory than the picture proofs [that is, dia-

grams that prove the same theorems]. I suspect that induction – the

passage from n to n + 1 – more than any other feature, best characterizes

2 Recall that arguments by mathematical induction are deductions – unlike, for example, the

argument that since 1, 1 + 8, and 1 + 8 + 27 are all perfect squares, it is likely true that for

any natural number n, the sum of the first n cubes is a perfect square. The latter argument
is not a proof; it is not a case of ‘mathematical induction’ in the sense I mean here.
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the natural numbers. That’s why a standard proof [that is, by mathe-

matical induction rather than by diagrams] is in many ways better – it is
more explanatory. (1997: 177; cf. Brown 1999: 42)

On the other hand, Steiner (1978: 151) says that proofs by mathematical

induction ‘usually’ are not explanatory. Steiner is the only philosopher I
know who has defended his view regarding the explanatory power (or impo-

tence) of mathematical inductions by appealing to a comprehensive account

of mathematical explanation. However, he offers no argument independent
of that account for his view concerning mathematical inductions. So it is

difficult to regard him as testing his account by seeing whether it gives the

right answer regarding mathematical inductions.
Writing about the first inductive proof above, Hafner and Mancosu (2005:

234) say that to deem it explanatory ‘would indeed be very counterintuitive!’
They elaborate slightly:

it clearly isn’t [explanatory] . . . according to the understanding of work-

ing mathematicians (some mathematicians even take inductive proofs to

be paradigms of non-explanatory proofs). (Hafner and Mancosu 2005:
237)

But they offer neither references to mathematicians expressing this view nor

an argument to motivate it. Likewise, regarding the first induction I gave
above, Hanna (1990: 10; cf. Hanna 1989: 48) writes, ‘[T]his is certainly an

acceptable proof . . . What it does not do, however, is show why the sum of

the first n integers is n(n + 1)/2 . . . Proofs by mathematical induction are non-
explanatory in general.’3 There is also a small body of empirical psycholo-

gical studies (e.g. Reid 2001; Smith 2006) suggesting that students generally

regard proofs by mathematical induction as deficient in explaining why the
theorem proved is true.

My aim in this brief article is to end this fruitless exchange of intuitions
with a neat argument that proofs by mathematical induction are generally

not explanatory. Although this argument is very simple, it does not appear in

the literature. To recognize why mathematical inductions are generally not
explanatory, we do not need to join Brown in considering what feature best

characterizes the natural numbers or to join Steiner in appealing to some

controversial premisses about how mathematical explanations operate –
just as we do not need to appeal to controversial premisses about scientific

explanation in order to recognize certain canonical examples as genuine

scientific explanations (and others as possessing no explanatory power).

3 Mancosu (2001: 113) notes the contrast between Hanna and Brown. Of course, it

could be that all of these writers are mistaken because some mathematical inductions

are explanatory, others are not, and there is no broad truth about what they ‘usually’
or ‘generally’ are.
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Here is all that I shall presuppose about mathematical explanation. First,

I shall presuppose that a mathematical explanation of a given mathematical
truth F may consist of a proof (i.e. a deduction) of F from various other

mathematical truths G1, . . . , Gn. (If no mathematical proof could be a math-

ematical explanation, then proofs by mathematical induction would be
non-starters as mathematical explanations.) In such an explanation, the Gi

collectively explain why F obtains; each of G1, G2 and so forth helps to

explain F (e.g. F is explained partly by G1). Such a mathematical explanation
is like many typical scientific explanations. For example, Kepler’s laws of

planetary motion are explained by being deduced from Newton’s laws of

motion and gravity, that the sun and planets are roughly spherical hunks
of matter, that the sun contains nearly all of the solar system’s matter, and so

forth; hence, Newton’s law of gravity helps to explain why Kepler’s laws

hold.4 Accordingly, I will take over the terminology standardly used in dis-
cussing scientific explanations and say that in such a mathematical explana-

tion, the Gi (the explainers) constitute the ‘explanans’ and F (the fact being

explained) is the ‘explanandum’.
Philosophers who disagree sharply about which mathematical proofs are

explanatory nevertheless agree that not all mathematical proofs are mathe-
matical explanations; indeed, they say, of two proofs having exactly the same

premisses and conclusion, one may be explanatory even though the other is

not. Regarding the crucial question of what it takes for various mathematical
truths Gi to constitute the explanans in such a mathematical explanation of

F, I shall presuppose very little about the answer (beyond F’s following

deductively from the Gi). In fact, I shall presuppose only that mathematical
explanations cannot run in a circle. That is, I will presuppose that when one

mathematical truth helps to explain another, the former is partly responsible
for the latter in such a way that the latter cannot then be partly responsible
for the former. Relations of explanatory priority are asymmetric. Otherwise

mathematical explanation would be nothing at all like scientific explanation.
Of course, this presupposition permits a given mathematical truth to have

many different explanations. It also permits mathematical definitions to run

in circles, since a definition of some mathematical truth F need not be speci-
fying why F is true. (Admittedly, in asking for a definition of F, we might say,

‘Could you please explain F?’ But that question need not be demanding a

mathematical explanation, i.e. an answer to the question ‘Why is F true?’)
If mathematical ‘explanations’ do not trace asymmetric relations of explana-

tory priority, then they merely display illuminating connections among var-

ious mathematical facts. They do not answer why-questions. Although it is

4 Of course, not every scientific explanation is a deductive argument for the fact being

explained; in some cases, the explainers merely entail that the fact being explained has

a given likelihood. Moreover, neither Newton’s laws nor Kepler’s laws are exactly true.
But we do not need to worry about either of these complications in the mathematical case.
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valuable to get clear about how the truth of various propositions in one part of
the mathematical landscape connects to the truth of propositions in another,
those connections need not be mathematical explanations of one by the other.

Plausibly, that F explains why G holds and that G explains why H holds
entails that F explains why H holds. In that case, to permit an explanatory
circle (where F explains why G holds and G explains why F holds) would be
to permit a given fact to explain itself. But self-explanation in mathematics is
presumably impossible. Here, then, is further support for my presumption
that mathematical explanations, whatever they are, cannot run in a circle.

2. The proposed solution

A proof by mathematical induction proceeds according to the following rule
of inference:

Mathematical induction:

For any property P:
if P(1) [1 has property P] and
for any natural number (i.e. 1, 2, 3. . .) k, if P(k), then P(k + 1).
then for any natural number n, P(n).

Since this rule of inference is necessarily truth-preserving, an argument by
mathematical induction constitutes a proof.

Is such an argument explanatory? If it were, what would the mathematical
explanation be? The explanans would be (for some particular property P) the
fact that P(1) and that (for any natural number k) if P(k) then P(k + 1). For
instance, if the first proof given above were explanatory, then the explanan-
dum – the fact that for any natural number n, the sum of the first n natural
numbers is n(n + 1)/2 – would be explained in part by the fact that the
summation formula works for n = 1.

But the case of n = 1, though often more mathematically tractable than
other cases, seems to have no special explanatory privilege over them. From
this thought, I will now work my way towards an argument that mathema-
tical inductions are generally not explanatory.

If a theorem can be proved by mathematical induction proceeding upwards
from n = 1, then generally it can also be proved by an argument like math-
ematical induction, but instead proceeding upwards and downwards from
n = k for any other, arbitrarily selected natural number k. Of course, it is
usually easier to begin by showing that P(1) rather than by showing, say, that
P(5), since the proof of P(1) is often trivial. And it is obviously easier to show
merely that if P(k), then P(k + 1), rather than to demonstrate not only this
‘upwards’ fact, but also the ‘downwards’ fact that if P(k), then P(k� 1),
for any natural number k> 1. (A proof cannot be given by proceeding
exclusively downwards, since there is no largest natural number from
which to proceed.) But the longer argument would be just as effective as
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the argument by mathematical induction in proving that P(n) for any natural
number n. The rule of inference:

Upwards and downwards from 5:

For any property P:
if P(5), and
for any natural number k, if P(k), then P(k + 1), and
for any natural number k> 1, if P(k), then P(k� 1),
then for any natural number n, P(n)

is necessarily truth-preserving, just like the rule of mathematical induction.5

Indeed, the term ‘mathematical induction’ is sometimes applied to arguments
that use not the rule of mathematical induction given above, but some other
necessarily truth-preserving rule belonging to the same family as that rule and
the ‘upwards and downwards from 5’ rule, such as:

Upward jumps of 2:

For any property P:
if P(1) and P(2), and
for any natural number k, if P(k), then P(k + 2),
then for any natural number n, P(n).

Strong induction:

For any property P:
if P(1), and
for any natural number k, if P(1) and P(2) and . . . P(k� 1), then P(k),
then for any natural number n, P(n).

Backward induction (Hardy et al. 1934: 20):

For any property P:
if P(k) holds for an infinite number of natural numbers k, and
for any natural number k, if P(k), then P(k� 1).
then for any natural number n, P(n).

Let us stick to the ‘upwards and downwards from 5’ rule. If a theorem can
be proved by mathematical induction (i.e. by the ‘upwards from 1’ rule), then
generally it can also be proved by an argument using the ‘upwards and
downwards from 5’ rule. For instance, the ‘upwards and downwards from
5’ rule can be used to prove the two theorems that were proved above by
mathematical induction:

Show that for any natural number n, the sum of the first n natural numbers is
equal to n(n + 1)/2.

5 The ‘upwards and downwards from 5’ rule does not have us check by hand that P(1)

through P(5) are all true. Rather, it proceeds from P(5) downward as well as upward by
an ‘inductive-style’ argument.
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For n = 5, the sum is 1 + 2 + 3 + 4 + 5 = 15, and n(n + 1)/2 = 5(6)/2 = 15.

If the summation formula is correct for n = k, then (I showed earlier) it is

correct for n = k + 1.

If the summation formula is correct for n = k (where k> 1), then the sum
of the first k – 1 natural numbers is [k(k + 1)/2] – k = k[(k + 1)/2 – 1]=
k(k – 1)/2, so the summation formula is correct for n = k – 1.

Show that for any natural number n, the sum of the squares of the first n
natural numbers is equal to n3/3 + n2/2 + n/6.

For n = 5, the sum is 1 + 4 + 9 + 16 + 25 = 55, and n3/3 + n2/2 + n/6=

125/3 + 25/2 + 5/6 = 41 2/3 + 12 1/2 + 5/6 = 55.

If the summation formula is correct for n = k, then (I showed earlier) it is

correct for n = k + 1.

If the summation formula is correct for n = k (where k> 1), then the sum

of the squares of the first k–1 natural numbers is

k3/3 + k2/2 + k/6 – k2

= k3/3 + k2/2 + k/6 – k2 + k – k – 1/3 + 1/2 – 1/6
= k3/3 – k2 + k – 1/3 + k2/2 – k + 1/2 + k/6 – 1/6
= 1/3 (k3 – 3k2 + 3k – 1) + 1/2 (k2 – 2k + 1) + 1/6 (k – 1)
= (k – 1)3/3 + (k – 1)2/2 + (k – 1)/6,

so the summation rule is correct for n = (k – 1).

If the proofs by mathematical induction are explanatory, then the very
similar proofs by the ‘upwards and downwards from 5’ rule are equally

explanatory. There is nothing to distinguish them, except for where they

start. But they cannot both be explanatory. It cannot be that P(1) helps to
explain why P(5) holds and that P(5) helps to explain why P(1) holds, on pain

of mathematical explanations running in a circle. Therefore, a mathematical

induction does not explain the theorem that it proves if that theorem can also
be proved by the ‘upwards and downwards from 5’ rule. Since generally any

theorem provable by mathematical induction can also be proved by the

‘upwards and downwards from 5’ rule, mathematical inductions are gener-
ally not explanatory.

This argument does not show merely that some proofs by mathematical
induction are not explanatory. It shows that none are – because if one were

explanatory, then the corresponding proof by the ‘upwards and downwards

from 5’ rule would also be explanatory, and they cannot both be. It would be
arbitrary for one of these arguments but not the other to be explanatory.

It might be objected that there is no circularity involved in both of these

arguments being explanatory: the argument by mathematical induction

explains why it is the case that for any n, P(n); it does not explain why
P(5). So when the argument by the ‘upwards and downwards from 5’ rule
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uses P(5) to explain the fact that for any n, P(n), the explanans is not a fact
that the inductive argument explains.

I reply: if the argument from mathematical induction uses P(1) to explain
why it is the case that for any n, P(n), then for any n 6¼ 1, the argument uses
P(1) to explain why P(n) is true – and so, in particular, uses P(1) to explain
why P(5) is true. Compare a scientific example: Coulomb’s law (giving the
electrostatic force between two stationary point charges) explains why the
magnitude E of the electric field of a long straight wire (of negligible thick-
ness) with uniform linear charge density � is 2�/r at a distance r from the
wire. In explaining why for any � and r, E = 2�/r, Coulomb’s law explains in
particular why E = 4 dyn/statcoulomb if �= 10 statcoulombs/cm and
r = 5 cm. By the same token, if P(1) explains why for any n, P(n), then P(1)
explains in particular why P(5).

It might be suggested that although my argument shows that mathematical
induction is generally not explanatory (on pain of explanatory circularity),
my argument fails to show why it is generally not explanatory. But it does
suggest why. An explanation by mathematical induction would have to
include P(1) as part of the explanans. However, P(1) is generally not expla-
natorily prior to P(5), for example, or to any other instance of the theorem
being proved. It would be arbitrary to privilege P(1). So mathematical induc-
tions are generally not explanatory.6

The University of North Carolina at Chapel Hill
Chapel Hill, NC 275993125, USA

mlange@email.unc.edu

6 Some philosophers may believe that 1 is ontologically prior to the other natural numbers –

for instance, that every natural number is somehow constituted by 1. For all I have said,

such philosophers may take mathematical inductions to be explanatory. Whatever argu-
ment these philosophers give that 1 is prior would break the symmetry between a proof by

mathematical induction and a proof of the same theorem that proceeds upwards and

downwards from 5. I have shown only that a commitment to the explanatory power of
mathematical inductions would require a commitment to 1’s ontological priority over the

other natural numbers. Although such priority seems dubious to me, I have offered no

argument against it.

Of course, philosophers dubious of mathematical explanation in general might try to
generalize my circularity worry: taking any proof to be explanatory requires arbitrarily

privileging some particular axiomatization of mathematics.

Suppose we wanted to know not ‘Why is it the case that for any natural number n,

P(n)?’, but rather ‘Why does P(n) hold either for any natural number n or for no natural
number at all?’ (In other words, ‘Why is it not the case that P(n) holds for some but not

for all natural numbers n?’) Perhaps an argument in the same family as mathematical

induction, showing that we can prove this result by proceeding upwards and downwards

from any arbitrary value for n, could answer this question. Since this argument allows any
initial value for n, it does not arbitrarily privilege the fact that P(k) for some particular k.

To answer the question, the argument would have to show only that if P(n) holds for one

natural number n, then P(n) holds for all natural numbers. So only the ‘inductive step’ of
the induction-style argument would be needed.
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Classical logic without bivalence
TOR SANDQVIST

1. Introduction

Semantic justifications of the classical rules of logical inference typically make
use of a notion of bivalent truth, understood as a property guaranteed to
attach to a sentence or its negation regardless of the prospects for speakers to
determine it as so doing. For want of a convincing alternative account of
classical logic, some philosophers suspicious of such recognition-transcending
bivalence have seen no choice but to declare classical deduction unwarranted
and settle for a weaker system; intuitionistic logic in particular, buttressed by
assertion-conditional semantics, is often considered to enjoy a degree of
meaning-theoretical respectability unattainable by classical logic.
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