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Abstract Explanation in mathematics has recently attracted increased attention

from philosophers. The central issue is taken to be how to distinguish between two

types of mathematical proofs: those that explain why what they prove is true and

those that merely prove theorems without explaining why they are true. This way of

framing the issue neglects the possibility of mathematical explanations that are not

proofs at all. This paper addresses what it would take for a non-proof to explain. The

paper focuses on a particular example of an explanatory non-proof: an argument that

mathematicians regard as explaining why a given theorem holds regarding the

derivative of an infinite sum of differentiable functions. The paper contrasts this

explanatory non-proof with various non-explanatory proofs (and non-explanatory

nonproofs) of the same theorem. The paper offers an account of what makes the

given non-proof explanatory. This account is motivated by investigating the diffi-

culties that arise when we try to extend Mark Steiner’s influential account of

explanatory proofs to cover this explanatory non-proof.

1 Introduction

Compared to scientific explanation, which has been a central topic in the philosophy

of science for over sixty years, explanation in mathematics has been relatively

understudied. However, philosophers are now paying increased attention to the

ways in which mathematicians explain why a given mathematical fact holds (Leng

2005; Mancosu 2008; Baker 2009). These philosophers have invariably focused
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their attention on the contrast between two different classes of mathematical proofs:

those that explain what they prove and those that do not. Often the contrast is drawn

between proofs of the very same theorem—one explaining why it holds and another

merely proving that it holds. The philosophical goal is to identify the source of this

difference in the proofs’ explanatory power (just as accounts of scientific

explanation aim to understand why, for instance, an inference from the flagpole’s

height can explain its shadow’s length, but an inference from the shadow to the

flagpole is not explanatory). Researchers in mathematics education (e.g., Mudaly

and de Villiers 2000; Healy and Hoyles 2000) have also investigated empirically

how learners assess the explanatory power of different proofs of the same theorem

and how students seek a proof that explains why a result is true even if they have

already seen a proof that fully convinces them that it is true.

Here is a lovely example from the mathematical literature (first brought to my

attention by Roy Sorensen).1 Take an ordinary calculator keyboard.

7 8 9

4 5 6

1 2 3

We can form a six-digit number by taking the three digits on any row, column, or

main diagonal on the keyboard in forward and then in reverse order. For instance,

the bottom row taken from left to right, and then right to left, yields 123321. There

are sixteen such ‘‘calculator numbers’’: 123321, 321123, 456654, 654456, 789987,

987789, 147741, 741147, 258852, 852258, 369963, 963369, 159951, 951159,

357753, and 753357. As you can easily verify (with a calculator!), every one of

these numbers is divisible by 37. Is this (as the title of a recent Mathematical

Gazette article asks) a coincidence?2 Why does the calculator-number theorem

hold?

A proof that simply takes each calculator number in turn, showing it to be

divisible by 37, treats the result as if it were a coincidence. In contrast, here is a

proof of the calculator-number theorem (from a later Mathematical Gazette article

entitled ‘‘No Coincidence’’) that explains why it holds:

Let a, a ? d, a ? 2d be any three integers in arithmetic progression. Then

a � 105 þ aþ dð Þ � 104 þ aþ 2dð Þ � 103 þ aþ 2dð Þ � 102 þ aþ dð Þ � 10þ a � 1
¼ a 105 þ 104 þ 103 þ 102 þ 10þ 1

� �
þ d 104 þ 2 � 103 þ 2 � 102 þ 10

� �

¼ 1111111aþ 12210d ¼ 1221 91aþ 10dð Þ:

1 I discuss this example and Sorensen’s views in my (2010) and (2016).
2 The article appears (unsigned, as a ‘‘gleaning’’) on p. 283 of the December 1986 issue.
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So not only is the number divisible by 37, but by 1221 (= 3 9 11 9 37)

(Nummela 1987: 147)

An account of mathematical explanation should identify what makes the latter proof

explanatory, unlike the brute-force proof that checks each calculator number

individually.

However, not all mathematical explanations consist of proofs of the facts they

explain.3 Although mathematical explanations that are not proofs have received

very little of the attention that philosophers (and empirical researchers in

mathematics education) have recently paid to mathematical explanation, any

adequate theory of mathematical explanation must account for mathematical

explanations that are not proofs (just as an adequate theory of scientific explanation

must account for those scientific explanations, such as statistical explanations,

where the explanans fails to logically entail the explanandum).4

In this paper, I will focus on one example of this neglected variety of

mathematical explanation. The fact being explained can be proved, but the typical

textbook proof does not explain why it holds, whereas an argument that is not a

proof succeeds in explaining it. Instead of contrasting an explanatory proof with a

non-explanatory proof and trying to account for which is which, I will contrast a

non-explanatory proof with an explanatory non-proof (as well as with several non-

explanatory non-proofs) and I will try to account for their differences in explanatory

power.5 In Sect. 2, I will give the example. In Sect. 3, I will explore whether one

influential account of explanatory proofs (Mark Steiner’s) can be naturally

expanded to cover it, drawing some lessons from that effort. Then, in Sect. 4, I

will propose my own account.

Though I will focus primarily on this single example, I believe that many other

mathematical explanations work in the same way as it does. In Sect. 5, I will briefly

mention some other examples. They provide new and important ways of testing any

proposed account of mathematical explanation. How such non-proofs explain can

thus shed light on why some proofs rather than others explain.

3 Of course, there are many senses of ‘‘mathematical explanation’’ that do not involve proofs; for

instance, I can explain to my class what ‘‘uniform convergence’’ means or how to evaluate an integral or

why so many students got the wrong answer on their test. None of these is a ‘‘mathematical explanation’’

in the sense of this paper (and of the recent literature I just mentioned). The same point arises in

connection with scientific explanation; as Hempel (2001: 80) pointed out, an account of scientific

explanation does not aim to cover ‘‘the vastly different senses of ‘explain’ involved when we speak of

explaining the rules of a game, or … when we ask someone to explain to us how to repair a leaking

faucet’’.
4 Of course, a mathematical explanation may fail to prove the fact it explains because it merely sketches

such a proof rather than giving it fully—just as some ‘‘scientific explanations’’ are merely explanation

sketches. My concern in this paper is with some mathematical explanations that do not work by proving

or even by sketching a proof of their explanandum.
5 D’Alessandro (forthcoming) also discusses mathematical non-proofs that explain. He focuses on non-

arguments that explain in mathematics; in particular, he argues that various mathematical theorems

explain, independent of their proofs. By contrast, I will focus on mathematical arguments that are not

proofs but nevertheless explain.
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2 A Mathematical Explanation that Does Not Prove Its Explanandum

Take an infinite sequence of functions f1(x), f2(x), f3(x)…, where each function is

differentiable at x = a. Consider the function (f1 ? f2 ? f3 ? ���)(x), i.e., the

function that is the sum f1(x) ? f2(x) ? f3(x)���. It turns out that for some x = a, the

sum of the derivatives of the various terms does not equal the derivative of the sum.

In other words, sometimes f1
0(a) ? f2

0(a) ? f3
0(a)��� does not equal (f1 ? f2 ?

f3 ? ���)0(a). This theorem (that in some cases, the derivative of the infinite sum is

unequal to the infinite sum of the derivatives) is our explanandum.

Obviously, a single example where these two quantities are unequal suffices to

prove that they are not always equal. Here is such a typical textbook ‘‘proof by

example’’. Consider the Fourier series

F xð Þ ¼ 4

p
cos

px
2

� �
� 1

3
cos

3px
2

� �
þ 1

5
cos

5px
2

� �
� 1

7
cos

7px
2

� �
þ � � �

� 	

For any - 1\ x\ 1, F(x) = 1, and so its derivative F0(x) = 0. However, differ-

entiating F(x) term by term, we obtain

G xð Þ ¼ � 2 sin px=2ð Þ�sin 3px=2ð Þ þ sin 5px=2ð Þ�sin 7px=2ð Þ þ � � �½ �

and so, for instance,

G :5ð Þ ¼ � p
2 1�1�1þ 1þ 1�1�1þ 1þ � � �½ �;

which fails to converge. Therefore, G(.5) = F0(.5); we have proved by example that

the derivative at x = a of a sum of infinitely many terms, each differentiable at

x = a, need not equal the sum of the terms’ derivatives at x = a.6

Why is that? Why are these two quantities not always equal?

I am not sure that this is a well-posed question simply as it stands. As yet, there

seems to me no clear sense to asking for an explanation of this theorem’s truth if we

do not intend to be asking merely for a proof of its truth. To ask why G(.5) = F0(.5)
in the above example seems to me nothing more than a potentially misleading way

of asking for a proof that they are unequal. It would be like asking why

r
3

1

x3 � 5x þ 2ð Þdx ¼ 4: When this equation is stated outside of any context, I can’t

see anything that it would be to explain why it holds; all we can do is to prove that it

does.

However, we can take our theorem [that (f1 ? f2 ? f3 ? ���)0(a) is not always

equal to f1
0(a) ? f2

0(a) ? f3
0(a)���] and place it in a richer context. If two functions

f(x) and g(x) are each differentiable at x = a, then the function that is their sum

(f ? g)(x) = f(x) ? g(x) is also differentiable at x = a, and the derivative of the

sum is the sum of the derivatives: (f ? g)0(a) = f0(a) ? g0(a). The analogous

theorem applies to the sum of three differentiable functions, or four differentiable

6 The mathematical discussion here and below closely follows Bressoud (1994: 73–74). Note that if each

of the fi is differentiable on [a, b] and f1
0(x) ? f2

0(x) ? f3
0(x)��� converges uniformly on [a, b], then

f1
0(x) ? f2

0(x) ? f3
0(x)��� = (f1 ? f2 ? f3 ? ���)0(x) for all x in [a, b].
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functions—or n differentiable functions for any natural number n. This is the ‘‘sum

rule’’ for differentiation. However, as we just saw, the analogous theorem does not

apply in the infinite case. Why is that? Why doesn’t the sum rule hold in the infinite

case?

We now have a well-posed why question regarding our theorem. The contrast

between the finite and infinite cases succeeds in fixing what it would be to explain why

our theorem regarding the infinite case holds. Roughly speaking, an explanation of the

theorem’s holding must explain why the infinite case differs from the finite case with

regard to the derivative of the sum equaling the sum of the derivatives. In other words,

an explanation must (roughly speaking) reveal the difference it makes that the sum is

infinite rather than finite. This is how the explanatory non-proof that I am about to give

is often introduced in mathematics textbooks. For instance, Bressoud (1994: 65)

presents the non-proof that I am about to give as answering the question ‘‘What goes

wrongwith the infinite series?’’, where ‘‘goingwrong’’ is differing from finite series in

sometimes violating the sum rule. I take Bressoud’s question to be a demand for a

mathematical explanation (as we will see shortly, he says explicitly that we can use

the non-proof to ‘‘explain why’’ our explanandum holds). It is standard for the sum

rule’s failure in the infinite case to be presented as standing in stark contrast to the

finite cases (see for instance, D’Angelo 2002: 23; Smith and McLelland 2003: 93).

That our explanandum’s salient feature is its contrast with the sum rule in finite cases

will eventually play an important part in my account.

The ‘‘proof by example’’ given above does not explain why the sum rule fails in

the infinite case; it merely shows that sometimes in the infinite case, the derivative

of the sum does not equal the sum of the derivatives. Here, by contrast, is an

explanation:

Let’s show that if f and g are differentiable at x = a, then

(f ? g)0(a) = f0(a) ? g0(a). By definition, f0(a) = lim
h!0

f aþhð Þ�f ðaÞ
h

and g0(a) =

lim
h!0

g aþhð Þ�gðaÞ
h

. Let’s unpack these limits: for every e/2[ 0, there are d1,

d2[ 0 such that if |h|\ d1, then |f0(a) � f aþhð Þ�f ðaÞ
h

|\ e/2, and if |h|\ d2, then

|g0(a) � g aþhð Þ�gðaÞ
h

|\ e/2. Let d be the smaller of d1 and d2 (or their common

value if they are equal). Then for any e/2[ 0, if |h|\ d, then |f0(a) ? g0(a)

� fþgð Þ aþhð Þ�ðfþgÞðaÞ
h

| = |f0(a) � f aþhð Þ�f ðaÞ
h

? g0(a)� g aþhð Þ�gðaÞ
h

| B |f0(a)

� f aþhð Þ�f ðaÞ
h

| ? |g0(a)� g aþhð Þ�gðaÞ
h

|\ e/2 ? e/2 = e. So f0(a) ? g0(a) =

lim
h!0

fþgð Þ aþhð Þ�ðfþgÞðaÞ
h

, which (by definition) equals (f ? g)0(a).

Thus we have proved that for any two differentiable functions, the derivative

of their sum is equal to the sum of their derivatives. To prove the analogous

result for n functions, we replace e/2 with e/n and let d be the member of

d1,…,dn that is smaller than (or as small as) the rest; from among any finite

number n of positive numbers, there is certain to be one that is smaller than (or

as small as) each of the others. But not so for an infinite number of positive

numbers! With infinitely many functions and hence infinitely many di, there is
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no guarantee that some positive number is less than or equal to every di.
Rather, the di may approach arbitrarily close to 0.

That difference explains why in the infinite case, (f1 ? f2 ? f3 ? ���)0(a) is not

always equal to f1
0(a) ? f2

0(a) ? f3
0(a)���. That this argument accounts for our

theorem is not merely my own view. Mathematicians also characterize it as

explanatory. For example, Bressoud (1994: 69) gives the above argument and says

that we can thereby ‘‘explain why it is that sometimes you can differentiate an

infinite series by differentiating each term, and sometimes you cannot’’.

Though explaining why the sum rule fails in the infinite case, the above argument

does not prove this theorem. It reveals how a certain proof of the sum rule in every finite

case cannot be generalized to the infinite case; it identifies a place in that proofwhere the

existence of finitely many terms in the sum is needed. In particular, with infinitely many

di, it does not follow automatically that some positive number is less than or equal to

every di. However, the above argument does not demonstrate that there exists an infinite

sumofdifferentiable functionswhere thedi approach arbitrarily close to 0 (of course, the
‘‘proof by example’’ reveals that there is). That the equation’s proof in the finite case

does not carry over to the infinite case fails to show that there is no proof of some other

kind for the sum rule in the infinite case; it does not show that the equality fails in every

infinite case or even that it fails in some infinite case. It shows merely that the door is

open to its failing—not that any case walks through the open door. So here we have an

explanation of our theorem that does not consist of a proof of the explanandum (though it

does include a proof of the corresponding theorem for finite n).

3 Lessons from the Failure of a Steineresque Account

Mathematical explanations that are not proofs pose a new and important challenge

to existing philosophical accounts of mathematical explanation. Perhaps the best-

known account is Steiner’s (1978). Like every other proposal in the literature,

Steiner’s account aims to distinguish ‘‘proofs that explain’’ from ‘‘proofs that

merely demonstrate’’ (Steiner 1978: 135). In this section, I will examine whether

Steiner’s account can be expanded to cover the explanatory non-proof given in the

previous section. The prospects initially seem favorable. Steiner’s account (roughly

speaking) identifies proofs as having explanatory power if and only if they

generalize, and as we saw, the explanatory non-proof in the previous section also

has something to do with generalizability: it works precisely by revealing a certain

proof’s generalizability to be limited. Therefore, Steiner’s approach appears well-

suited to capturing the source of this non-proof’s explanatory power. However, I

will uncover two obstacles to expanding Steiner’s account to cover this explanatory

non-proof. These obstacles will reveal some additional aspects of this explanation

that make crucial contributions to its explanatory power. They will point us toward

the proposal that I will make in the next section.

According to Steiner (1978), a proof of some theorem concerning S1’s (some

class of mathematical entities) explains why that theorem holds if and only if the
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proof reveals how the theorem depends on S1’s ‘‘characterizing property’’—that is,

on the property essential to being an S1 that is just sufficient to distinguish S1’s from

other entities in the same ‘‘family’’ (for example, to distinguish triangles from other

kinds of polygons). To reveal the theorem’s dependence on S1’s characterizing

property, the proof must be ‘‘generalizable’’ in the following sense. Suppose that

S1’s characterizing property is replaced in the proof by the characterizing property

for another kind S2 in the same family, but otherwise the original ‘‘proof idea’’ is

retained. Then the resulting ‘‘deformation’’ of the original proof proves another

theorem—one concerning S2’s. In short, a proof of the theorem explains why the

theorem holds exactly when it employs a strategy by which different, but analogous

theorems can be proved for different classes in the same family.

As it stands, this account fails to cover the explanation given in the previous

section. That explanation is not a proof, so perforce it is not a proof that generalizes.

Some philosophers (e.g., Resnik and Kushner 1987: 147–152) have criticized

Steiner’s account on the grounds that certain explanatory proofs simply collapse

when one tries to generalize them to other classes in the same family. The

explanation from the previous section prompts a different objection to Steiner’s

account: if a proof of some theorem collapses when we try to generalize that proof

to another class in the same family, then that proof’s collapse can itself explain a

mathematical fact about that other class. In other words, whereas Steiner regards a

proof’s generalizability as giving it the power to explain the theorem proved, it turns

out that a proof’s failure to generalize from S1’s to S2’s can explain why there is no

theorem for S2’s analogous to the theorem proved for S1’s.

We could conclude at this point that Steiner’s proposal simply cannot account for

the explanation in the previous section. But let’s not be hasty. Steiner acknowledges

(Steiner 1978: 147) that not all mathematical explanations are proofs and suggests

briefly that explanatory non-proofs are similar in important ways to explanatory

proofs. Steiner does not work to elaborate his account of explanatory proofs so as to

cover explanatory non-proofs. Let’s see what happens if we try to do so.

Steiner’s basic proposal is that a theorem’s explanation reveals its dependence on

the characterizing property of the class it concerns. Steiner identifies a proof’s

‘‘generalizability’’ as the way in which it reveals such dependence. But perhaps

dependence can also be revealed by a proof’s non-generalizability. That the proofs

of the sum rule for two functions, for three functions, and so forth fail to generalize

to the sum of infinitely many functions explains why the sum rule fails to hold in the

infinite case.

Of course, we had better not expand Steiner’s proposal to say that a given

theorem’s proof explains why that theorem holds if and only if the proof either can

be generalized or cannot be generalized. However, the explanation in the previous

section did not consist of a proof of the theorem being explained that failed to

generalize. Rather, it consisted of several proofs all using the same ‘‘proof idea’’ (as

Steiner’s would say), each proving a different theorem (‘‘The derivative of the sum

of two functions equals …’’, ‘‘The derivative of the sum of three functions equals

…’’) that is not the theorem being explained (‘‘It is not always the case that the

derivative of the sum of infinitely many functions equals…’’). All of these theorems

(those proved as well as the explanandum) concern different classes in the same
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family. These proofs fail to generalize to prove the negation of the theorem being

explained (i.e., to prove that the sum rule holds in the infinite case). Suppose we try

expanding Steiner’s account so that it deems to be explanatory any non-proof

satisfying the conditions in the preceding three sentences. This expansion apparently

expresses the notion that non-generalizability can sometimes explain.

To explain a given theorem, according to this ‘‘Steineresque’’ proposal, it does

not suffice merely to offer a proof of another theorem (or a collection of proofs of

several other theorems, all using the same ‘‘proof idea’’) where that proof fails to

generalize to prove the explanandum’s negation. The explanandum’s negation is

false, so obviously every proof fails to generalize to prove it. Yet only the failure of

certain proofs to generalize to prove the explanandum’s negation sheds any light on

why the explanandum holds. For instance, consider the proof (in Sect. 1) that

explains why the ‘‘calculator number’’ theorem holds. That proof (like every other

proof of anything) fails to generalize to prove that the sum rule holds in the infinite

case. But the Steineresque proposal does not say that the proof explaining the

calculator-number theorem also explains why the sum rule fails in the infinite case.

To do that, the calculator-number theorem would have to concern a class in the

same family as the class of sums of infinitely many differentiable functions.

Although Steiner (1978: 147) admits to having no definition of what it is for two

classes to belong to the same ‘‘family’’, we can grant that the class of calculator

numbers does not belong to the same family as the class of sums of infinitely many

differentiable functions. In contrast, the class of sums of infinitely many

differentiable functions arguably belongs to the same family as the class of sums

of two differentiable functions, the class of sums of three differentiable functions,

and so forth.

We need to refine this Steineresque proposal further (though still in the spirit of

Steiner’s original account) to give it the best opportunity of capturing the power of

the non-proof (involving infinitely many di) to explain why the sum rule fails in the

infinite case. So far, the Steineresque proposal is satisfied by proofs (sharing a

‘‘proof idea’’) of any theorems at all regarding the sums of finitely many

differentiable functions; those sums are arguably members of the same ‘‘family’’ as

sums of infinitely many differentiable functions. But to explain why the sum rule

fails in the infinite case, those proofs must succeed in proving not just any theorems

at all regarding the sums of finitely many differentiable functions, but in particular

theorems that are analogous to the fact being explained—in the way that various

theorems are analogous if they specify that the sum rule holds (or fails to hold) for

some range of cases. That the sum rule holds for any finite number of differentiable

functions—and can be proved to do so by using a certain ‘‘proof idea’’—might

reasonably have suggested (at least to some degree) that the sum rule’s holding in

the infinite case can be proved in the same way. That (surprisingly) it cannot be so

proved may thus help to explain why the sum rule fails in the infinite case.7

As I mentioned, Steiner’s account of explanatory proofs says that a given proof

explains when the same ‘‘proof idea’’ can be used to prove other theorems regarding

7 May explain—but may not. As we will see, the explanation requires certain further conditions to be

satisfied.
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different classes in the same family. Implicit in the same proof idea’s being used is

arguably that these other theorems are analogous to the theorem being explained—

that the theorems are all ‘‘deformations’’ of one another. So far, then, this proposal

remains in the spirit of Steiner’s own.

However, this Steineresque proposal fails to capture one important aspect of the

relation that we have noticed between the explanandum (the sum rule’s failure in

the infinite case) and the sum rule’s holding in all finite cases. Consider the

argument involving infinitely many di that explains why (without proving that) the

sum rule fails in the infinite case. This argument’s explanatory power depends (as I

have said) upon the surprisingness of the sum rule’s failure in the infinite case,

considering that it holds in all finite cases. We saw earlier that even to ask for an

explanation of the sum rule’s failure in the infinite case, as distinct from a proof of

its failure, makes sense only in a context where the sum rule’s failure in the

infinite case is presented as contrasting sharply with the sum rule’s holding in

every finite case. By contrast, Steiner maintains that a why question regarding our

explanandum is meaningful independent of the explanandum’s being juxtaposed to

the sum rule’s holding in every finite case. I have suggested otherwise and that

mathematics textbooks reflect this fact. It is only because the sum rule’s failure in

the infinite case is being contrasted with its holding in all finite cases that the non-

proof involving infinitely many di derives explanatory power by showing where

this contrast comes from. Because this contrast informs the why question, the kind

of proof that an explanation identifies as failing to generalize to prove the sum rule

in the infinite case must be a kind of proof by which the sum rule can be proved in

finite cases.

This lesson takes us to the second obstacle to expanding Steiner’s account to

cover the explanatory non-proof in the previous section. The obstacle is that when

we consider various proofs of the sum rule in finite cases (that fail to generalize to

prove the sum rule in the infinite case—an unnecessary qualification, since the sum

rule fails in the infinite case and so cannot be proved there), we find that not all of

these proofs explain why the sum rule fails in the infinite case. What gave the

argument in the previous section (involving infinitely many di) its power to explain

why the sum rule fails in the infinite case is not merely the feature that the

Steineresque account captures: that the argument revealed a certain proof idea to be

non-generalizable to the infinite case, despite its proving the sum rule in finite cases.

Rather, the non-proof in the previous section derives its explanatory power from the

particular way in which it shows the proof idea to be non-generalizable to the

infinite case.

What particular way was that? Let me put it crudely for the moment. In Sect. 2,

we saw that the proof idea by which we proved the sum rule for two functions, for

three functions, and so forth fails to carry over to the infinite case. Crucially, we saw

something more: we identified what stops the proof idea from generalizing and

thereby prevents the sum rule from holding in the infinite case. Our seeing what

stops the proof idea from generalizing involves something more than our

discovering merely that those proofs regarding finite cases fail to generalize to

the infinite case. The way they fail to generalize reveals the mechanism behind this

failure—the cause of the problem. Of course, in mathematics we are not dealing
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with causal mechanisms!8 Nevertheless, the Steineresque account does not capture

the fact that the explanation works by identifying something as what’s keeping the

proof idea that succeeded in the finite cases from also succeeding in the infinite case.

Less picturesquely, the explanation points out that what’s holding the proof idea

back from applying in the infinite case is that with infinitely many functions and

hence infinitely many di, there is no guarantee that some positive number is less than

or equal to every di. This consideration prevents the proof from generalizing to the

infinite case and thereby accounts for the sum rule’s failure there. The role played

by this consideration in supplying the argument with explanatory power must be

captured by an adequate philosophical account of mathematical non-proofs that

explain.

To appreciate this point, let’s look at an argument that satisfies the Steineresque

account but intuitively does not explain why the sum rule fails in the infinite case.

This argument will show another proof idea that succeeds in proving the sum rule in

finite cases to be non-generalizable to the infinite case. But the argument will differ

from the explanatory non-proof in the previous section (involving infinitely many

di) in that it will not reveal what stops the sum rule from holding in the infinite case.

More precisely, the argument will fail to identify a further feature of the infinite case

that contrasts with the finite cases and keeps the proof idea from carrying over to the

infinite case. By a further respect in which the cases differ, I mean a respect beyond

the fact that one case is infinite and the other cases are finite and also beyond the fact

that the proof idea fails to apply to the infinite case though applying to the finite

cases.

Before giving the argument that another proof idea fails to generalize to the

infinite case, I want to say why it will turn out to be important whether or not an

argument identifies a further feature by which the infinite case differs from the finite

cases. In the following section, I will propose that for a non-proof of the sum rule’s

failure in the infinite case to explain why it fails there, the argument needs to

identify a difference between the infinite and finite cases (other than that one is

infinite and the others are finite) that is distinct from and so can account for the

proof idea’s failure to carry over to the infinite case. The difference identified by the

explanatory non-proof (involving infinitely many di) given in Sect. 2 concerned

whether or not there must be some positive number less than or equal to every di.
No analogous difference is identified by the following ‘‘bootstrapping’’

argument:

8 Nevertheless, talk of ‘‘mechanism’’ is sometimes used by those who study math education in order to

gesture toward the difference between a mathematical explanation of some fact and a proof of it that does

not explain why it holds. For instance:

Specific counter-examples are examples that merely satisfy the task of refuting a statement, and do

not contribute to the understanding of the general case …. On the other hand, general examples

uncover the crucial mechanism involved in the situation. This mechanism is both an explanation to

the fact that the claim can be refuted, as well as a manifestation that counter-examples can be

generated. (Peled and Zaslavsky 1997: 58–59, cf. 50)

This point applies to the explanation of the sum rule’s failing in the infinite case and how this explanation

differs in explanatory power from the specific counterexample (also given in Sect. 2) to the sum rule for

the infinite case.
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Begin with any proof (such as the one given in the previous section) for the

sum rule for two functions: (f ? g)0(x) = f0(x) ? g0(x). Apply the sum rule

just proved to the two functions (f ? g)(x) and h(x), showing that

(f ? g ? h)0(x) = (f ? g)0(x) ? h0(x). Use (f ? g)0(x) = f0(x) ? g0(x) to

substitute for (f ? g)0(x), thereby proving (f ? g ? h)0(x) = f0(x) ? g0(x) ?
h0(x), i.e., the sum rule for three functions. In the same way apply the sum rule

for two functions to the functions (f ? g ? h)(x) and j(x) to show

(f ? g ? h ? j)0(x) = (f ? g ? h)0(x) ? j0(x). Use the just proved

(f ? g ? h)0(x) = f0(x) ? g0(x) ? h0(x) to substitute for (f ? g ? h)0(x),
thereby proving the sum rule for four functions. And so on for five functions,

six functions, ….9

This argument is non-generalizable to the infinite case; it can reach only finite

numbers of functions.

Like the explanatory non-proof (involving infinitely many di) given in Sect. 2,

this argument does not prove that the sum rule fails in the infinite case. The

Steineresque proposal regards this argument as explaining why the sum rule does

not apply to the infinite case. Intuitively, however, this argument fails to supply an

explanation (and I have never seen it cited in the mathematics literature as

explanatory). Unlike the explanatory non-proof given in Sect. 2, this argument does

not identify something as blocking the argument from extending to the infinite case.

The proof idea (roughly, to bootstrap from two functions to three to four to …)

simply lacks the potential ever to get to the infinite case. Nothing needed to step in

and derail it before it reached the infinite case. It was never going to get that far.10

Hence, that some proof idea generalizes to all finite cases, but fails to prove the

sum rule in the infinite case, may nevertheless not explain why that the sum rule

fails in the infinite case. In order to explain, the failure to generalize must be shown

to arise from the infinite case’s failure to share some feature (besides finitude) with

all of the finite cases. In identifying that feature, an explanatory non-proof specifies

why the proof in finite cases gets derailed when we try to generalize it to the infinite

case—and thereby explains why the sum rule fails in the infinite case. Let’s now

look at an account of mathematical explanation that captures this aspect of our

example and so is sensitive not only to a proof idea’s non-generalizability, but also

to the way in which it fails to generalize.

4 My Proposal

With regard to the sum rule’s failure in the infinite case, what must an account of

mathematical explanations do? It must account not only for the explanatory power

of the non-proof given in Sect. 2, but also for the explanatory impotence of the

9 This argument could equally well have been expressed in terms of mathematical induction.
10 The principle of mathematical induction (see previous footnote) does not allow the argument to extend

to the infinite case, but does not specify any difference between the finite and infinite cases (other than

that the latter is infinite) that is standing in the way. The infinite case simply fails to fall within the

principle’s scope.
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‘‘proof by example’’ in Sect. 2 and of the bootstrapping argument in the previous

section. We also expect an account of explanatory non-proofs to cohere with an

account of mathematical explanations that prove what they explain. I presume (as

does Steiner) that these kinds of explanation work in similar ways—just as

philosophers who work on scientific explanation widely presume that explanations

where the explanandum does not follow logically from the explanans, such as

statistical explanations, work in much (though, of course, not entirely) the same way

as explanations in which the explanans entails the explanandum. Accordingly, I’ll

start by sketching an account of explanatory proofs and then show how that account

expands naturally to cover explanatory non-proofs. I will incorporate into my

account the lessons we learned from the Steineresque proposal’s deficiencies.

Let’s return to the mathematical explanation of the calculator-number theorem,

which I introduced at the start of Sect. 1. What’s striking about this theorem is that

it reveals a respect in which all of the calculator numbers are alike (namely, they are

all divisible by 37). The proof of this theorem that explains why it holds exploits

another respect in which the calculator numbers are all alike in virtue of being

calculator numbers—a respect that is distinct from (though required by) their being

calculator numbers (and that is also distinct from their being divisible by 37). This

similarity is that each calculator number can be expressed as 105a ? 104

(a ? d) ? 103(a ? 2d) ?102(a ? 2d) ? 10(a ? d) ? a where a, a ? d, a ? 2d

are three integers in arithmetic progression (these three integers can be the three

digits on the calculator keypads that, taken forwards and backwards, generate the

given calculator number). The explanatory proof thus traces the fact that every

calculator number is divisible by 37 to another property that they have in common

by virtue of being calculator numbers. In this respect, the explanatory proof differs

sharply from the non-explanatory, brute-force proof that checks each of the sixteen

calculator numbers individually. That proof identifies no common origin of the

calculator numbers’ common divisibility by 37.

This difference between the explanatory and non-explanatory proofs of the

calculator-number theorem suggests that a proof explains a theorem concerning a

given set up if and only if that theorem has some salient feature and the proof

exploits a feature of the same kind that is possessed by the set up. The relevant kind

of feature in the calculator-number example is a similarity among all of the

calculator numbers. But an entirely different kind of feature might be salient in

another mathematical result. For example, the result being explained might

strikingly exhibit a certain symmetry. A proof of that result explains why it holds if

and only if that proof derives the result by exploiting a similar symmetry in the set

up. On this view, the distinction between proofs that explain why some theorem is

true and proofs that merely establish that the theorem is true exists only in a context

where some feature of the theorem is salient. This proposal correctly predicts an

observation we made earlier: for a result having no especially striking feature, such

as that r
3

1

x3 � 5x þ 2ð Þdx ¼ 4; there is nothing that it would be to explain why it

holds; there is only a proof that it holds. Likewise, with regard to the theorem that

the sum rule fails in the infinite case, we saw that there is nothing it would be to
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explain why this theorem holds until the sum rule’s failure in the infinite case is

contrasted with its holding in all finite cases. Where that contrast is striking, it

informs what an explanation would be.

Elsewhere (2014, 2016) I have elaborated and defended this account of the

difference between explanatory and non-explanatory proofs. Without pausing now

to do that, let’s see how this rough proposal expands naturally to cover an

explanatory non-proof. Whereas the salient feature of the calculator-number

theorem is the similarity it reveals among all of the calculator numbers, the salient

feature of the sum-rule theorem regarding the infinite case is its difference from the

sum-rule theorem for finite cases. Hence, just as a proof explains the calculator-

number theorem by taking the salient similarity that the theorem ascribes to the

calculator numbers and deriving it from another respect in which the calculator

numbers are alike, so an argument explains the sum rule’s failure in the infinite case

by tracing the salient difference between the infinite and finite cases to another

respect in which they differ—a respect that is distinct from (though required by) the

fact that one is infinite and the other finite (and that is also distinct from the sum

rule’s holding of one but not the other). To trace the salient difference to this other

difference, it suffices to show that this other difference keeps a proof idea that works

for the finite case from generalizing to the infinite case. As we have seen, the

difference that the explanatory non-proof points out is that for finitely many

functions and hence finitely many di, there exists some positive number less than or

equal to every di, but there need not exist such a positive number for infinitely many

functions and hence infinitely many di. The proof regarding finite cases appeals to

this guarantee, so without it in the infinite case, the proof of the sum rule in the finite

case cannot generalize to the infinite case.

On my proposal, this explanatory non-proof explains in much the same way as

the proof explaining the calculator-number theorem. A certain similarity among the

calculator numbers (that they are all expressible in the same form) allows the same

proof to show them all to be divisible by 37, and when the salient feature of the

calculator-number theorem is the similarity that it reveals among the calculator

numbers, then a proof of the theorem explains why it holds if the proof exploits

another similarity they bear (distinct from but required by their all being calculator

numbers). Just as the explanandum in the calculator-number example makes salient

a similarity among the calculator numbers, so the sum rule’s failure in the infinite

case makes salient a difference between the infinite and finite cases. Just as the

explanation of the calculator-number theorem works by tracing the salient similarity

to another similarity among the calculator numbers, so the explanation of the sum-

rule theorem works by tracing the salient difference that the theorem reveals

between infinite and finite cases to another difference between them (distinct from

but required by their difference in cardinality).

My proposal thus gives an account of this non-proof’s explanatory power that

coheres with its account of explanatory proofs. My proposal also incorporates one of

the lessons we learned from examining the Steineresque proposal: that a proof

idea’s failure to yield a proof that the sum rule holds in the infinite case explains the

sum rule’s failure in the infinite case only if that proof idea enables the sum rule to

be proved in finite cases. Only such a proof idea allows us to take the difference
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between the sum rule in the infinite and finite cases and trace it to some other

difference between those cases.

Furthermore, my account vindicates our earlier thought that the explanatory non-

proof derives its explanatory power from revealing the ‘‘mechanism’’ responsible

for the sum rule’s failure in the infinite case. Let’s see how this result arises from the

fact that on my account, the explanation works by taking the difference between the

sum rule in the infinite and finite cases and tracing this difference back to some

other difference between those cases that is distinct from but required by their

difference in cardinality. In so tracing back the difference in the sum rule’s holding,

the explanatory non-proof identifies what it is about being an infinite case, by

contrast with being a finite case, that blocks a proof for the finite case from

extending to the infinite case. The explanatory non-proof identifies the difference

that makes this difference to be that finite and infinite cases differ in whether there is

guaranteed to be some positive number less than or equal to every di. In tracing the

difference in the sum rule’s holding back to this other difference, the explanatory

non-proof reveals how this other difference makes a difference to the sum rule’s

holding; that is, it points out which step of the proof regarding finite cases is blocked

by this feature of infinite cases. In identifying what it is about being an infinite case

that stops the proof from going through, as well as how this feature of infinite cases

stops the proof, the explanation gives the ‘‘mechanism’’ by which the proof in the

finite case is kept from extending to the infinite case.

One way to identify what blocks the proof’s extension to the infinite case

(thereby revealing the ‘‘mechanism’’ at work) is to specify what would avoid this

blockage—that is, to specify what some infinite case would have to be like in order

for the proof in the finite case to carry over to that infinite case (namely, for there to

be some positive number less than or equal to every di). Some infinite cases allow

this to happen (see footnote 6). By specifying what infinite cases would have to be

like in order for the proof in the finite case to carry over to them, the explanatory

non-proof may be helpful in constructing additional infinite cases where the sum

rule fails—more helpful than either the ‘‘proof by example’’ or the bootstrapping

proof. But I do not take the explanatory non-proof’s helpfulness in this regard to be

the source of its explanatory power. On my view, it is the other way around. In other

words, the explanatory non-proof’s power to explain why the sum rule fails in the

infinite case is what makes the explanatory non-proof helpful in constructing

counterexamples to the sum rule in the infinite case, rather than its helpfulness in

constructing counterexamples making it explanatory.

By contrast with the explanatory non-proof, the bootstrapping proof’s non-

generalizability does not specify a ‘‘mechanism’’ responsible for the sum rule’s

failure; the bootstrapping proof fails to indicate what infinite cases must be like in

order for a proof of the sum rule to carry over to them. We saw how the explanatory

non-proof points out a difference between finite and infinite sums that makes a

difference to whether a certain strategy for proving the sum rule succeeds (namely,

that in the finite but not the infinite case, there is guaranteed to be a positive number

less than or equal to every di). No such difference between finite and infinite sums is

identified as responsible for the bootstrapping proof’s failure to reach the infinite

case. Although the bootstrapping proof never manages to reach the infinite case, the
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proof contains no particular step that goes through in the finite case but not when we

try to generalize the proof to the infinite case. In this way, my account says why the

bootstrapping proof of the finite sum-rule theorem, despite not generalizing to the

infinite case, fails to explain the sum rule’s breaking down for the infinite case. As

we saw, the Steineresque account could not do this. My account incorporates the

lesson we learned from the second obstacle encountered by the Steineresque

account: that the particular way in which a proof fails to generalize to the infinite

case, despite proving the sum rule for finite cases, makes a difference to whether its

non-generalizability can explain.11

Furthermore, my proposal explains why we do not need to give a proof of the

sum-rule theorem in the infinite case in order to explain why that theorem holds.

When the salient feature of the sum-rule theorem for the infinite case is its

difference from the sum-rule theorem for finite cases, its explanation need only find

another difference between the infinite and finite cases and show how that difference

turns out to make a difference to the sum rule’s holding. A respect in which the

infinite case differs from finite cases can make a relevant difference merely by

derailing in the infinite case a proof idea that works to prove the sum rule in the

finite case. Stopping the proof is making a difference.12

By contrast, the Steineresque account cannot say why we do not need to give a

proof of the theorem in order to explain it. The explanandum is a theorem, so why

should anything less than a proof of it be enough to answer the why question? The

Steineresque account cannot say why, because it does not recognize that what is

11 As we saw at the very start of the paper, mathematicians regard the fact that two calculator numbers

are both divisible by 37 as no coincidence, and that is because of the proof that explains why every

calculator number is divisible by 37. I have suggested that when a result’s salient feature is that it

identifies a respect in which various cases are alike, then a proof explains that result exactly when the

proof exploits some other respect in which those cases are alike and from there arrives at the result by

treating all of the cases in the same way. I now suggest that if the result with such a salient feature has no

such explanation, then it is a mathematical coincidence. Likewise, suppose we had not yet proved that the

sum rule holds of every pair of differentiable functions and suppose we found that for four particular

functions f1, …, f4, f1
0(x) ? f2

0(x) = (f1 ? f2)
0(x) and f3

0(x) ? f4
0(x) = (f3 ? f4)

0(x). We might then

wonder whether or not this fact is a coincidence. The general proof of the sum rule for two functions

makes it no coincidence. However, let’s add to those two facts an example where the sum rule holds for

the sum of infinitely many functions. (There are such examples; see footnote 6.) That the sum rule holds

for those three cases is a coincidence since the sum rule’s holding of those three cases cannot be derived

from the respects in which those three cases are alike (e.g., that each is the sum of differentiable functions

on the real numbers).
12 This is how I would reply to the objection that the explanatory non-proof I have been examining does

not explain why the sum rule fails in the infinite case; it explains merely why a given proof in the finite

case does not carry over to the infinite case. I agree that it explains why the proof does not carry over. But

when the salient feature of the sum rule’s failure in the infinite case is that by this failure, the infinite case

stands in contrast to all finite cases, then we can explain the sum rule’s failure in the infinite case by

identifying another difference between finite and infinite cases that stops a proof of the sum rule in the

finite case from generalizing to the infinite case. In this respect, the example is analogous to a standard

case from the literature on scientific explanation. Suppose tertiary syphilis is necessary for the

development of paresis (though very few patients with tertiary syphilis develop paresis). Suppose we ask

why Jones developed paresis—and we pose this question in a context where the salient contrast is with

Smith, who did not develop paresis. That Jones had tertiary syphilis (where Smith did not) answers the

question; it explains more than merely why the mechanism that kept Smith from getting paresis failed to

carry over to Jones.
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required to explain some result depends on what feature of the explanandum is

salient—so that if its salient feature is its difference from another result, then its

explanation need not prove it. In the context of the sum rule for finite cases, to ask

for an explanation of the sum-rule theorem in the infinite case is to ask where its

difference from the theorem for finite cases comes from. We can reveal a difference

that the sum’s cardinality makes to the sum rule without proving the sum-rule

theorem in the infinite case: by revealing precisely how the cardinality makes a

difference to whether a proof goes through. Conversely, the ‘‘proof by example’’ in

Sect. 2 fails to specify where the infinite sum-rule theorem’s difference from the

finite sum-rule theorem comes from, so the proof by example fails to explain the

infinite sum-rule theorem—despite proving it.

5 Conclusion

Though we have focused on a single example of an explanatory non-proof, many

other explanations in mathematics work in the very same way. For instance, suppose

we ask why it is not the case that for every continuous function on the rational

numbers in the interval [a, b] where f(a)\ 0\ f(b), there is a c [ [a, b] such that

f(c) = 0. With this why question put so baldly, it seems to me indeterminate what it

would take to explain why this fact holds if this task is supposed to be distinct from

proving that it holds.

However, suppose we mention the explanandum along with the intermediate-

value theorem (IVT): that for every continuous function on the real numbers in the

interval [a, b] where f(a)\ 0\ f(b), there is a c [ [a, b] such that f(c) = 0. In this

context, the explanandum’s salient feature is its contrast with the IVT, so to ask why

the explanandum holds is to ask why the IVT’s analogue for the rationals (i.e., the

explanandum’s negation) fails to hold. This why question is not answered by a

‘‘proof by example’’ that the IVT’s analogue does not apply to the rationals; for

instance, the why question is not answered by noting that for the function

f(x) = x2 - 2 defined for rational x’s, f(0) = - 2 and f(2) = 2 but there is no

rational number x such that f(x) = 0 (since H2 is irrational).

An explanation is instead supplied by a proof of the IVT that at a certain step

exploits a property of the reals that is not possessed by the rationals. Such an

explanation identifies a specific difference between the reals and rationals that is

responsible for their difference with respect to the proof idea’s success in proving an

IVT-type theorem. Typically, such a proof of the IVT exploits the real numbers’

possession of the least-upper-bound property: that every nonempty set of real

numbers having an upper bound is guaranteed to have a least upper bound. The

rationals lack this property (for instance, the set of rationals having their square less

than 2 has an upper bound, such as 5, but no least upper bound since for any upper

bound among the rationals, there is a smaller one). The rationals’ failure to possess

the least-upper-bound property blocks the standard proof of the IVT from
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generalizing to prove the IVT’s analogue for the rationals.13 This fact fails to prove

that the IVT-analogue for the rationals is violated but explains why it is in fact

violated. This explanatory non-proof works by tracing the salient difference

between the rationals and reals to another respect in which they differ—a respect

that is distinct from (though required by) the fact that one is the set of reals and the

other is the set of rationals.14 In all of these respects, this example of an explanatory

non-proof is like the one that we have been examining.

Closely related are explanations that answer question of the form ‘‘Why is this

result so hard to prove?’’ and ‘‘Why is this problem so much harder to solve than

that one, when they appear so much alike?’’ When two problems are being

contrasted as to their difficulty, the answer to the why question must trace the

difference in their difficulty to some other difference between them that prevents a

means of solving one of them from generalizing to solve the other. Since the

explanandum is not a theorem, its explanation cannot be a proof since only theorems

have proofs.

Questions of the form ‘‘Why is this result so hard to prove (when that one isn’t)?’’

have long been a focus of mathematical research. Here is one such famous question

with which mathematicians remain engaged today. Standard techniques allow all of

the following results to be derived:

1�1=3þ 1=5�1=7þ � � � ¼ p=4

1=12 þ 1=22 þ 1=32 þ � � � ¼ p2=6

1=12�1=22 þ 1=32�1=42 þ � � � ¼ p2=12

1=13�1=33 þ 1=53�1=73 þ � � � ¼ p3=32

But despite its similarity to all of these examples, no one has found such an

expression to complete the equation

1=13 þ 1=23 þ 1=33 þ � � � ¼ ?

Why is this sum15 so much more difficult than the others, from which it differs only

slightly? This is a notorious why question:

Why the problem goes from ‘‘not hard’’ to ‘‘stupendously hard’’ just by

making what appears to be such minor changes remains an immensely deep

mystery (Nahin 2009: 99).

Philosophers should devote some attention to understanding how mathematical

explanations that answer ‘‘Why is this problem so difficult?’’ questions operate.16

13 Resnik and Kushner (1987: 147–152) use this example to argue that Steiner’s requirement that an

explanatory proof generalize is too high since this proof of the IVT fails to generalize to the rationals.
14 Many textbooks (e.g., Spivak 1980: 121–122) prove the IVT by appealing to the least-upper-bound

property and show how this proof ‘‘goes wrong’’ (Spivak 1980: 114) for the rationals.

15 This sum is f(3), where f(s) =
P1

n¼1
1
ns
is the Riemann zeta function. f(s) is intractable for any positive

odd integer (other than s = 1, for which the sum diverges).
16 As another example where a mathematician explains why one problem turns out to be so much more

difficult than another, seemingly closely related one, consider these remarks that Hardy wrote in his copy
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Presumably, to explain why a given problem is so difficult, we must identify the

obstacle that blocks some relevant standard proof strategy from succeeding—just as

we did in explaining why the sum rule fails in the infinite case.

Explanatory non-proofs have been understudied. It is important that philosophers

interested in mathematical explanation not confine their attention to mathematical

proofs. An account of the distinction between proofs that do and proofs that do not

explain why the theorems they prove hold should extend in some natural way to

cover explanatory non-proofs.
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of a letter he had written to Ramanujan: ‘‘When r is even fðxe�ppi=qÞ is an elementary function. The same

sort of method applies but is much easier. Hence we see why the odd case is so much harder’’ (Berndt and

Rankin 1995: 152).
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