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I ncreased	attention	has	recently	been	paid	to	the	fact	that	in	math-
ematical	practice,	certain	mathematical	proofs	but	not	others	are	
recognized	 as	 explaining	 why	 the	 theorems	 they	 prove	 obtain	

(Mancosu	2008;	Lange	2010,	2015a,	2016;	Pincock	2015).	Such	“math-
ematical	explanation”	 is	presumably	not	a	variety	of	 causal	explana-
tion.	In	addition,	the	role	of	metaphysical	grounding	as	underwriting	a	
variety	of	explanations	has	also	recently	received	increased	attention	
(Correia	and	Schnieder	2012;	Fine	2001,	2012;	Rosen	2010;	Schaffer	
2016).	Accordingly,	it	 is	natural	to	wonder	whether	mathematical	ex-
planation	is	a	variety	of	grounding	explanation.	This	paper	will	offer	
several	arguments	that	it	is	not.	

One	 obstacle	 facing	 these	 arguments	 is	 that	 there	 is	 currently	
no	 widely	 accepted	 account	 of	 either	 mathematical	 explanation	 or	
grounding.	In	the	case	of	mathematical	explanation,	I	will	try	to	avoid	
this	obstacle	by	appealing	to	examples	of	proofs	that	mathematicians	
themselves	have	characterized	as	explanatory	(or	as	non-explanatory).	
I	 will	 offer	 many	 examples	 to	 avoid	 making	 my	 argument	 too	
dependent	 on	 any	 single	 one	 of	 them.	 I	 will	 also	 try	 to	 motivate	
these	 characterizations	 of	 various	 proofs	 as	 (non-)	 explanatory	 by	
proposing	an	account	of	what	makes	a	proof	explanatory.	In	the	case	
of	 grounding,	 I	will	 try	 to	 stick	with	 features	 of	 grounding	 that	 are	
relatively	uncontroversial	among	grounding	theorists.	But	I	will	also	
look	briefly	at	how	some	of	my	arguments	would	fare	under	alternative	
views	of	grounding.	 I	hope	at	 least	 to	 reveal	 something	about	what	
grounding	would	have	to	look	like	in	order	for	a	theorem’s	grounds	to	
mathematically	explain	why	that	theorem	obtains.	I	hope	thereby	to	
identify	some	of	the	difficulties	confronting	a	too-quick	identification	
of	grounding	relations	as	underwriting	explanation	in	mathematics.	

1. Proofs that Identify Grounds versus Proofs that Explain. 

Suppose	you	write	down	all	of	the	whole	numbers	from	1	to	99,999.	
How	many	times	would	you	write	down	the	digit	7?	The	answer	turns	
out	 to	be	 50,000	 times.	That	 is	 a	 striking	 result	 since	 (as	 you	have	
probably	noticed)	50,000	is	half	of	100,000,	which	is	just	one	more	
than	99,999.



	 marc	lange Ground and Explanation in Mathematics

philosophers’	imprint	 –		2		–	 vol.	19,	no.	33	(august	2019)

out	to	be	almost	exactly	half	of	99,999	is	treated	by	this	proof	as	if	it	
just	turned	out	that	way	as	a	matter	of	mathematical	coincidence.	Of	
course,	it	is	mathematically	necessary	that	the	number	of	7’s	is	almost	
equal	to	half	of	99,999;	this	result	is	obviously	not	a	matter	of	chance.	
Nevertheless,	as	far	as	this	proof	shows,	the	fact	that	the	number	of	
7’s	 is	almost	equal	 to	half	of	99,999	arises	 from	two	unrelated	 facts:	
that	there	are	50,000	7’s	and	that	50,000	is	half	of	100,000	(one	more	
than	 99,999).	 As	 far	 as	 this	 proof	 reveals,	 one	 of	 these	 facts	 is	 not	
responsible	for	the	other	and	there	is	no	important	common	reason	
behind	both.2	 The	proof	 arrives	 at	 the	number	of	 7’s	without	doing	
anything	 like	 taking	half	of	100,000.	Thus,	 the	proof	makes	 it	 seem	
like	sheer	happenstance	that	the	number	of	7’s	is	very	nearly	half	of	
99,999.	

By	contrast,	consider	this	proof	of	the	same	result:

Include	0	among	the	numbers	under	consideration	—	this	
will	not	change	the	number	of	times	the	digit	7	appears.	
Suppose	all	the	whole	numbers	from	0	to	99,999	(100,000	
of	them)	are	written	down	with	five	digits	each,	e.g.,	1306	
is	written	as	01306.	All	possible	five-digit	combinations	
are	 now	written	 down,	 once	 each.	 Because	 every	 digit	
will	 take	 every	 position	 equally	 often,	 every	 digit	must	
occur	the	same	number	of	times	overall.	Since	there	are	
100,000	numbers	with	five	digits	each	—	that	is,	500,000	
digits	—	each	of	the	10	digits	appears	50,000	times.	That	
is,	100,000	x	5/10	=	50,000.	(Dreyfus	and	Eisenberg	1986,	
3)3 

This	proof	does	not	specify	where	in	the	list	of	numbers	each	7	appears;	
it	does	not	give	the	result’s	ground.	Nevertheless,	this	proof	is	more	
illuminating	 than	 the	first	one	 in	 that	 it	explains why	 the	number	of	

2.	 There	are	many	examples	of	mathematical	coincidences,	such	as	the	fact	that	
(in	base	10)	the	13th	digit	of	π	is	equal	to	the	13th	digit	of	e.	For	that	example	
and	more	on	“mathematical	coincidence”,	see	Lange	(2010,	2016).

3.	 Thanks	to	Manya	Sundström	for	calling	this	article	to	my	attention.

One	way	to	prove	this	result	would	be	to	list	all	of	the	whole	numbers	
from	1	to	99,999;	to	note,	for	each	entry	in	the	list,	the	number	of	times	
the	digit	 7	 appears	 in	 it;	 and	 to	 add	 these	numbers	 of	 appearances,	
arriving	at	50,000	in	total. This	proof,	I	maintain,	gives	grounds	of	the	
fact	that	7	appears	50,000	times	in	total	from	1	to	99,999.	Here,	I	aim	
to	be	using	 the	notion	of	 “ground”	 in	 the	manner	 intended	by	Fine	
(2001,	2012)	and	many	other	grounding	theorists.	On	this	view,	a	fact’s	
grounds	are	whatever	it	is	in	virtue	of	which	that	fact	obtains,	and	a	
truth-bearer	(such	as	a	proposition)	is	grounded	in	its	truth-makers.	

In	 particular,	 by	 regarding	 the	 fact	 that	 7	 appears	 50,000	 times	
in	the	list	from	1	to	99,999	as	grounded	in	facts	about	the	individual	
appearances	of	7’s	in	that	list,	I	am	making	the	rough	presupposition	
that	 a	 mathematical	 fact	 is	 grounded	 by	 the	 atomic	 (or	 negated	
atomic)	 truths	 to	 which	 one	 is	 led	 if	 one	 starts	 with	 that	 fact	 and	
moves	 “downward”	 to	 logically	 simpler	 truths	 in	 an	 obvious	 way,	
such	as	from	universal	facts	(i.e.,	facts	expressed	by	generalizations)	
to	 their	 instances	 and	 from	 conjunctions	 to	 their	 conjuncts.1	 This	
presupposition	 seems	 to	 lie	 behind	 many	 plausible-looking	
claims	 about	 the	 grounds	 of	 mathematical	 facts.	 For	 instance,	 this	
presupposition	motivates	regarding	the	fact	that	every	number	in	the	
sequence	31,	331,	…,	3333331	is	prime	as	grounded	by	the	fact	that	31	
is	prime,	the	fact	that	…,	and	the	fact	that	3333331	is	prime.	Likewise,	
this	presupposition	motivates	regarding	the	fact	that	there	is	exactly	
one	prime	number	between	12	and	15	(inclusive)	as	grounded	in	the	
fact	13	 is	prime	but	12,	14,	and	15	are	composite.	 In	the	same	way,	 it	
motivates	 regarding	 the	 fact	 that	 7	 appears	 50,000	 times	 in	 the	 list	
from	1	 to	99,999	as	grounded	 in	 facts	about	 the	particular	 locations	
where	7	appears	(or	does	not	appear)	in	that	list.

Let’s	return	to	the	ponderous	proof	that	tallies	every	appearance	of	
a	7	in	the	list	of	numbers	from	1	to	99,999.	That	the	number	of	7’s	turns	

1.	 My	 thanks	 to	 a	 referee	 who	 urged	 me	 to	 be	 more	 explicit	 about	 these	
presuppositions	 concerning	 grounding	 and	 offered	 this	 formulation	 as	
a	 candidate	 for	 doing	 so.	 In	 the	 next	 section,	 I	 will	 consider	 briefly	 how	
my	 arguments	 would	 fare	 under	 an	 alternative	 picture	 of	 the	 grounds	 of	
mathematical	facts.
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has	 distinct	 full	 grounds	 in	 each	 of	 the	 disjuncts	 (e.g.,	 Correia	 and	
Schnieder	2012,	17;	Fine	2012,	58),	that	precedent	does	little	to	suggest	
that	 the	 second	 proof	 and	 the	 first	 proof	 cite	 distinct	 full	 grounds,	
since	the	fact	being	explained	is	not	a	disjunction.	The	second	proof	
might	 be	 construed	 as	 describing	 the	 result’s	 grounds	 (the	 decimal	
expressions	of	the	whole	numbers	from	1	to	99,999)	at	a	high	level	of	
abstraction:	in	terms	of	the	distribution	of	each	digit	in	the	list,	without	
specifying	where	in	the	list	each	appears.	But	in	the	next	section,	as	my	
third	reply	to	the	objection,	we	will	see	examples	where	explanatory	
proofs	arguably	do	not	even	describe	the	result’s	grounds	at	some	high	
level	of	abstraction.	(That	is	because	the	explanatory	proofs	in	those	
examples	are	“impure”.)

In	this	paper,	I	will	argue	that	the	phenomenon	on	display	in	this	
example is	widespread:	Many	mathematical	proofs	that	explain	why	
some	 result	 holds	 fail	 to	 present	 the	 grounds	of	 the	 theorem	being	
proved	and	many	mathematical	proofs	that	present	the	grounds	of	the	
theorem	being	proved	fail	to	explain	why	that	theorem	obtains.	I	will	
identify	several	reasons	why	grounds	and	explanations	tend	to	come	
apart	in	mathematics.

To	begin	to	show	why	this	is	typical,	I	will	give	another	example.5 
Consider	these	two	Taylor	series:

1	/	(1	–	x2)	=	1	+	x2	+	x4	+	x6	+	…

1	/	(1	+	x2)	=	1	–	x2	+	x4 – x6	+	…	                                

They	have	the	same	convergence	behavior:	For	real	x,	each	converges	
when	|x|	<	1	but	diverges	when	|x|	>	1.	That	is	a	remarkable	similarity,	
and	 it	 stands	 out	 especially	 strongly	 against	 the	 obvious	 difference	
between	 the	 two	 functions	 regarding	x	=	 1:	As	 their	graphs	 (below)	
show,	although	one	function	goes	undefined	at	x	=	1,	the	other	function	
behaves	quite	soberly	there.	That	the	two	functions’	Taylor	series	have	
the	 same	 convergence	 behavior	might	 therefore	 seem	 to	 be	 utterly	

5.	 This	example	has	been	discussed	by	Steiner	 (1978,	 18−19),	Waisman	 (1982,	
29−30),	and	Wilson	(2006,	313−314).

7’s	 is	 almost	 exactly	half	 of	 99,999.	 It	 reveals	where	 the	one-half	 of	
100,000	comes	from:	There	are	100,000	numbers	being	written	down,	
there	are	5	digits	 in	each	number,	 there	are	 10	options	 (in	base	 10)	
for	each	of	these	digits,	and	5	divided	by	10	is	one-half.	By	virtue	of	
this	proof,	I	suggest,	it	 is	no	mathematical	coincidence	that	the	total	
number	of	7’s	is	almost	exactly	half	of	99,999.

In	 section	3,	 I	will	have	more	 to	 say	more	about	what	makes	 the	
second	proof	explanatory,	by	contrast	with	the	first	proof.	For	now,	my	
aim	is	simply	to	prompt	you	to	appreciate	that	the	first	proof	(unlike	
the	second)	does	not	explain	why	the	result	holds,	despite	giving	the	
result’s	 ground,	 whereas	 the	 second	 proof	 explains	 why	 the	 result	
holds	despite	failing	to	identify	the	result’s	ground.	

It	 might	 be	 objected	 that	 although	 the	 first	 proof	 displays	 the	
result’s	 grounds,	 this	 fact	 does	 not	 preclude	 the	 second	 proof	 from	
also	doing	so;	a	given	fact	can	have	many	complete	sets	of	grounds.	
For	instance,	a	given	fact’s	grounds	can	themselves	have	grounds,	and	
the	latter	may	then	qualify	as	grounds	of	the	given	fact.4	I	have	three	
replies	 to	 this	 objection.	 Firstly,	 part	 of	what	 I	 regard	 this	 example	
as	 showing	 is	 that	 the	 grounds	 of	 a	 mathematical	 theorem	 do	 not	
automatically	(that	is,	simply	by	virtue	of	being	its	grounds)	explain	
it.	 Even	 if	 the	 second	proof	 also	gives	 the	 result’s	 grounds,	 that	 the	
first	proof	gives	its	grounds	without	explaining	why	the	result	holds	
suffices	to	show	that	a	theorem’s	grounds	do	not	automatically	explain	
it.	 If	mathematical	explanation	worked	by	 tracing	 the	explanandum	
to	its	grounds,	then	it	would	be	puzzling	why	the	first	proof	does	not	
qualify	as	a	mathematical	explanation.	Secondly,	it	is	not	obvious	why	
one	should	insist	that	the	second	proof	gives	the	result’s	grounds.	For	
instance,	it	is	not	the	case	that	the	second	proof	gives	grounds	of	any	
of	the	various	facts	(namely,	that	the	digit	7	appears	nowhere	in	1,	…	
appears	 twice	 in	7007,	…)	that	 the	first	proof	displays	as	grounding	
the	result.	Likewise,	although	plausibly	the	disjunction	of	two	truths	

4.	 Virtually	all	accounts	of	grounding	regard	grounding	as	transitive	(Correia	and	
Schnieder	2012,	32;	Fine	2012,	56)		though	see	note	16	for	one	circumstance	
in	which	(according	to	Schaffer	2016)	transitivity	may	be	violated.
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A	 ground	 for	 the	 fact	 that	 both	 series	 have	 this	 convergence	
behavior	is	that	the	first	series	exhibits	this	behavior	and	the	second	
series	does,	too.	A	conjunction	is	grounded	in	its	conjuncts.6	A	proof	of	
the	conjunction	that	gives	entirely	separate	proofs	of	its	two	conjuncts	
does	nothing	to	suggest	that	it	is	no	coincidence	that	the	two	functions	
share	this	convergence	behavior.	

However,	it	is	in	fact	no	coincidence,	as	we	discover	by	looking	at	
matters	on	 the	complex	plane.	The	“radius	of	convergence	 theorem”	
says	 that	 a	 complex	 Taylor	 series	will	 converge	 at	 all	 and	 only	 the	
points	within	a	certain	radius	of	the	origin	on	the	complex	plane:	

Radius of convergence theorem:	For	any	power	series	∑anzn 
(from	n	=	0	to	∞),	either	it	converges	for	all	complex	num-
bers	z,	or	it	converges	only	for	z	=	0,	or	there	is	a	number	
R	>	0	such	that	it	converges	if	|z|	<	R	and	diverges	if	|z|	
>	R.	

The	two	Taylor	series	share	the	same	convergence	behavior	because	
the	 two	 functions	 have	 another	 feature	 in	 common:	 They	 both	 go	
undefined	at	some	point	on	 the	unit	circle	centered	at	 the	origin	of	
the	complex	plane.	This	similarity	explains	why	the	two	Taylor	series	
behave	alike.	As	mathematician	Michael	Spivak	says,	a	proof	of	 the	
convergence	 theorem	 “helps	 explain	 the	 behavior	 of	 certain	 Taylor	
series	obtained	for	real	functions”	(Spivak	1980,	528),	such	as	in	the	
example	I	have	mentioned.	Thus,	a	proof	that	displays	the	ground	of	
this	mathematical	result	fails	to	explain	why	the	result	holds	because	
such	 a	 proof	 fails	 to	 give	 the	 two	 functions’	 common	 convergence	
behavior	the	same	proof	from	another	feature	that	the	two	functions	
share		when,	in	fact,	they	can	be	so	proved.	

With	the	Taylor	series	example	and	the	tallying	7’s	example,	I	have	
aimed	(i)	to	argue	that	a	mathematical	fact’s	grounds	do	not,	simply	
by	virtue	of	grounding	 it,	 thereby	explain	why	that	 fact	obtains	and	

6.	 As	Correia	and	Schnieder	 (2012,	 17)	 report,	 this	 fact	 about	a	 conjunction’s	
grounds	is	widely	acknowledged	in	the	grounding	literature	(e.g.,	Fine	2012,	
63;	Schaffer	2016,	53).	But	shortly	I	will	look	briefly	at	an	alternative	view.

coincidental,	 considering	 that	 the	 two	 functions	 appear	 to	 be	 quite	
dissimilar	in	other	respects.	

   

   f(x)	=	1	/	(1	+	x2)

   f(x)	=	1	/	(1	−	x2)
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I	will	 argue	 that	 a	mathematical	 fact’s	 grounds	do	not,	 by	 virtue	
of	grounding	it,	explain	why	it	obtains.	We	could	nevertheless	insist	
that	 grounds	 automatically	 explain	 in	 mathematics	 by	 making	 a	
bare	 stipulation:	 that	 grounds	 supply	 a	 special kind	 of	 explanation	
(“grounding	explanations”).	But	this	stipulation	would	not	reveal	that	
grounding	 is	 connected	 to	 explanation	 of	 the	 kind	 that	 figures	 in	
mathematical	practice.	That	kind	of	explanation	will	be	my	exclusive	
focus	throughout.

2. Purity, Brute Force, and Unification. 

The	proof	 that	 explains	why	 the	 two	Taylor	 series	exhibit	 the	 same	
convergence	behavior	places	the	two	Taylor	series	in	a	broader	context	
by	putting	 the	 two	 functions	 on	 the	 complex	plane.	 By	 introducing	
imaginary	numbers,	the	proof	introduces	concepts	exogenous	to	the	
theorem	 being	 proved,	 since	 the	 original	 two	 Taylor	 series	 involve	
only	real	numbers.	Thus,	one	 lesson	of	 the	Taylor	series	example	 is	
that	an	impure	proof	can	sometimes	explain	what	it	proves.	

By	a	“pure”	proof,	I	mean	roughly	a	proof	using	only	the	concepts	
that	are	(in	the	sense	I	will	clarify	below)	“intrinsic”	(as	mathematicians	
put	it)	to	the	theorem	being	proved	so	that	“the	resources	of	proof	[are]	
restricted	to	those	which	determine	[the	theorem’s]	content”	(Detlefsen	
2008,	 193).8	 Presumably,	 a	 proof	 giving	 the	 grounds	 of	 the	 theorem	
being	proved	must	be	a	pure	proof.	An	impure	proof	is	commonly	said	
to	introduce	“extraneous”	concepts		that	is,	presumably,	alien	to	the	

any	argument	I	will	give)	that	for	the	theorem	that	the	quintic	is	unsolvable,	
an	explanatory	proof	does	not	supply	the	theorem’s	ground.	

8.	 For	more	on	purity,	see	Detlefsen	(2008),	Detlefsen	and	Arana	(2011),	and	
references	therein.	How	to	make	“purity”	precise	is	a	topic	for	another	paper	
(though	see	the	next	paragraph).	Different	readings	of	“purity”	could	come	
apart	 in	 some	 cases,	 but	 I	will	 argue	 that	 even	 under	 a	 liberal	 reading	 of	
“purity”	that	deems	the	appeal	to	imaginary	numbers	to	be	a	pure	proof	of	the	
fact	about	the	two	Taylor	series,	this	proof’s	“purity”	does	not	contribute	to	
making	it	explanatory.	

(ii)	to	suggest	that	these	two	examples	are	typical	in	that	oftentimes,	
a	mathematical	 proof	 that	 specifies	 a	 fact’s	 grounds	 fails	 to	 explain	
why	 that	 fact	 obtains	whereas	 any	 explanation	of	 the	 fact	 does	not	
specify	its	ground.	None	of	these	claims	(for	which	I	will	argue	further)	
suggests	that	no	proof	identifying	some	mathematical	fact’s	grounds	
ever	explains	why	that	fact	obtains.	But	I	contend	that	even	in	such	a	
case,	what	makes	a	given	proof	explanatory	is	not that	it	identifies	the	
grounds	of	what	it	proves.	

In	 section	 2,	 I	 will	 give	 some	 further	 examples	 that	 distinguish	
proofs	that	explain	from	proofs	that	specify	grounds,	and	I	will	give	
some	 further	 reasons	why	 explaining	 and	 grounding	 tend	 to	 come	
apart.	In	particular,	I	will	focus	on	the	fact	that	explanatory	proofs	need	
not	exhibit	purity,	tend	not	to	be	brute	force,	and	often	unify	separate	
cases	by	identifying	common	reasons	behind	them	even	when	those	
cases	have	distinct	grounds.	In	section	3,	I	will	sketch	an	account	of	
what	makes	a	proof	explanatory.	I	will	then	use	that	account	to	defend	
the	morals	I	have	drawn	from	the	examples	I	have	already	given.	In	
section	4,	I	will	use	that	account	of	explanation	in	mathematics	to	give	
two	 further	 reasons	why	proofs	 that	 specify	grounds	 tend	not	 to	be	
proofs	that	explain.	In	particular,	I	will	argue	that	for	many	theorems,	
there	 is	no	proof	 that	 explains	why	 they	obtain,	 even	 though	 these	
theorems	 have	 grounds.	 I	will	 also	 argue	 that	 the	 role	 that	 context	
plays	in	making	a	proof	explanatory	ensures	that	explanatory	power	
frequently	 diverges	 from	 grounding	 (since,	 unlike	 having	 a	 certain	
explanation,	 a	 theorem’s	 having	 certain	 grounds	 is	 insensitive	 to	
context).	

The	question	this	paper	aims	to	address	is	whether	a	proof’s	power	
to	explain	what	it	proves	stands	in	any	general	relation	to	its	specifying	
the	ground	of	what	it	proves.	Accordingly,	this	paper	takes	for	granted	
that	in	mathematical	practice,	certain	proofs	differ	from	others	in	the	
degree	to	which	they	explain	why	a	given	theorem	holds.7 

7.	 For	 arguments	 that	 there	 is	 such	 a	 distinction	 (or	 matter	 of	 degree)	 of	
explanatoriness	in	mathematical	practice,	see	Mancosu	(2008),	Lange	(2016),	
and	references	therein.	Pincock	(2015,	11)	gives	a	brief	argument	(distinct	from	
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proof	draws	only	on	what	is	“intrinsic”	to	the	theorem	being	proved,	
which	automatically	includes	the	theorem’s	grounds.

It	might	be	objected	that	although	the	Taylor	series	theorem	concerns	
two	series	composed	entirely	of	real	numbers,	a	proof	that	appeals	to	
imaginary	numbers	should	still	be	regarded	as	pure	by	virtue	of	giving	
information	about	the	theorem’s	grounds		because	facts	about	the	
reals	 and	 facts	 about	 the	 imaginaries	 and	 all	 of	 the	 other	 complex	
numbers	have	the	same	grounds:	in	facts	about	sets.	However,	even	
if	facts	about	the	reals	and	facts	about	the	other	complex	numbers	are	
alike	grounded	in	set	theory,	those	grounds	are	not	given	by	the	proof	
of	the	Taylor	series	theorem	that	appeals	to	the	radius	of	convergence	
theorem.	That	proof	does	not	proceed	by	expressing	the	two	Taylor	
series	in	set-theoretic	terms,	nor	is	the	radius	of	convergence	theorem	
typically	(or	ever,	as	far	as	I	know)	proved	in	that	way.	Furthermore,	we	
do	not	have	to	know	that	facts	about	the	reals	and	facts	about	the	other	
complex	numbers	are	all	grounded	in	set	theory	(or	even	simply	that	
they	have	the	same	grounds)	 in	order	 to	appreciate	 the	explanatory	
power	of	the	proof	of	the	Taylor	series	theorem	that	proceeds	through	
the	 complex	numbers.	 (In	 the	next	 section,	 I	will	 sketch	a	proposal	
regarding	 the	 source	 of	 a	 proof’s	 explanatory	 power	 that	 accounts	
for	our	capacity	to	recognize	this	proof’s	explanatory	power	without	
our	having	to	regard	all	facts	about	reals	and	other	complex	numbers	
as	 grounded	 in	 the	 same	place.)	That	we	 can	 recognize	 the	proof’s	
explanatory	 power	 without	 recognizing	 that	 all	 complex	 numbers	
are	alike	grounded	in	set	theory	suggests	that	the	proof’s	explanatory	
power	does	not	depend	on	the	existence	of	that	common	set-theoretic	
ground	making	the	proof	qualify	as	pure.10 

That	an	impure	proof	can	be	explanatory	(even	where	there	is	a	pure	
proof	of	 the	 same	 theorem)	 shows	 that	 at	 least	 some	mathematical	
explanations	do	not	work	by	supplying	information	about	the	grounds	
of	the	theorem	being	explained.	Insofar	as	mathematical	explanations	

10.	 For	a	powerful	argument	that	the	reduction	of	arithmetic	to	set	theory	is	not	
explanatory,	see	D’Alessandro	(2018).

theorem	and	its	grounds.	Nevertheless,	mathematicians	recognize	that	
an	impure	proof	is	in	some	cases	more	explanatory	than	a	pure	proof.9

It	might	be	objected	that	a	proof	giving	the	grounds	of	the	theorem	
being	proved	need	not	be	a	pure	proof.	A	concept	could	fail	to	figure	in	
the	theorem,	in	the	definitions	of	the	concepts	figuring	in	the	theorem,	
in	 the	 definitions	 of	 the	 concepts	 figuring	 in	 those	 definitions,	 and	
so	on,	and	nevertheless	figure	 in	 the	 theorem’s	ground	 (just	as	one	
could	have	mastered	the	concepts	of	heat,	temperature,	and	so	forth	
without	 having	 any	 grasp	 of	 the	 concept	 of	 the	 kinetic	 energy	 of	
random	molecular	motion).	However,	it	seems	to	me	that	as	“purity”	is	
understood	in	mathematics,	if	a	concept	figures	in	the	ground	of	some	
mathematical	 fact,	 then	 a	 pure	proof	 of	 that	 fact	 can	 appeal	 to	 that	
concept.	A	“pure”	proof	does	not	mean	a	proof	using	only	the	concepts	
that	figure	 in	the	theorem	being	proved,	or	 in	 the	definitions	of	 the	
concepts	figuring	in	the	theorem,	or	in	the	definitions	of	the	concepts	
figuring	 in	 those	definitions,	and	so	on		or	 just	 the	resources	 that	
one	 needs	 to	 master	 in	 order	 to	 understand	 the	 theorem	 being	
proved.	Even	if	one	can	master	the	notion	of	a	real	number	without	
having	mastered	the	core	concepts	of	set	theory,	a	pure	proof	of	a	fact	
about	real	numbers	can	appeal	to	sets		if	facts	about	real	numbers	
are	grounded	 in	 facts	about	sets.	 Indeed,	 the	demands	of	purity	are	
sometimes	 understood	 in	 terms	 of	 grounding,	 as	 when	 Bolzano	 is	
understood	as	holding	that	pure	proofs	of	theorems	in	analysis	(e.g.,	
of	 the	 intermediate	 value	 theorem)	 cannot	 appeal	 to	 geometrical	
concepts	 because	 truths	 of	 analysis	 are	 not	 grounded	 in	 truths	 of	
geometry	(Detlefsen	and	Arana	2011,	4−5;	cf.	Bigelow	1988,	31).	A	pure	

9.	 Besides	the	Taylor	series	case,	there	are	many	other	examples	where	impure	
proofs	explain	what	pure	proofs	fail	to	explain.	For	example,	Lange	(2015a)	has	
argued	that	mathematicians	regard	Desargues’	theorem	in	two-dimensional	
Euclidean	geometry	as	explained	by	a	proof	that	not	only	introduces	a	third	
dimension	 that	 is	exogenous	 to	 the	 theorem,	but	also	puts	 the	 theorem	in	
the	context	of	projective	geometry,	which	supplements	Euclidean	geometry	
with	points	at	infinity	(where	parallels	meet).	This	additional	dimension	and	
these	points	at	infinity	are	extraneous	to	any	theorem	of	Euclidean	geometry.	
They	are	not	involved	in	making	it	true.	(However,	the	case	is	complicated;	
see	Hallett	2008,	222−228.)
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there	are	pure	proofs	of	the	same	theorem,	shows	that	even	under	the	
view	 that	 a	 fact	 can	be	grounded	 in	essences,	 it	 often	happens	 that	
a	mathematical	proof	specifying	a	fact’s	grounds	fails	to	explain	why	
that	fact	obtains,	whereas	an	explanation	of	the	fact	does	not	specify	
its	ground.

To	 suggest	 how	 common	 it	 is	 for	 mathematicians	 to	 regard	 an	
impure	proof	as	explanatory,	I	would	like	to	consider	briefly	another	
theorem	 in	 Euclidean	 geometry:	 that	 for	 any	 two	 circles,	 there	 is	 a	
line	such	that	 for	any	point	on	the	 line,	 the	 tangent	 from	that	point	
to	one	circle	is	equal	to	the	tangent	from	that	point	to	the	other	circle.	
This	 result	holds	whether	 the	 two	circles	 intersect	on	 the	Euclidean	
plane	in	two	points,	in	one	point,	or	nowhere.	These	three	cases	must	
be	proved	separately	if	the	proof	is	to	be	pure.	Such	a	proof	by	cases	
makes	 it	appear	 to	be	a	coincidence	 that	all	 three	cases	are	alike	 in	
having	such	a	line.	But	in	fact,	it	is	no	coincidence.	What	makes	it	no	
coincidence	is	(roughly	speaking)	the	existence	of	a	common	proof	of	all	
three	cases.	But	that	proof	is	impure:	It	involves	points	with	imaginary	
coordinates,	which	fall	nowhere	on	the	Euclidean	plane.	The	common	
proof	is	widely	regarded	as	making	the	theorem	no	coincidence	and	
as	explaining	why	the	theorem	holds.12	Nevertheless,	since	this	proof	
uses	imaginary	coordinates,	it	fails	to	identify	the	theorem’s	grounds.	

A	proof	that	proceeds	by	dividing	the	theorem	into	three	cases	is	
usually	carried	out	 in	coordinate	geometry.	 It	proceeds	by	assigning	

12.	 The	“common	proof”	proceeds	by	finding	the	line	through	the	two	points	at	
which	the	circles	intersect	and	then	showing	that	for	any	point	on	this	line,	
the	 tangent	 to	one	circle	equals	 the	 tangent	 to	 the	other.	 If	 the	 two	circles	
intersect	at	no	Euclidean	points,	 then	when	we	solve	 for	 the	two	points	at	
which	they	intersect,	we	arrive	at	points	with	imaginary	coordinates.	For	in-
stance,	if	one	circle	is	centered	at	(0,20)	with	radius	16	and	the	other	circle	
is	centered	at	(0,−15)	with	radius	9,	 then	their	equations	are	x2	+	(y−20)2	=	
162	and	x2	+	(y+15)2	=	92,	which	have	common	solutions	(12i,	0)	and	(−12i,0).	
Although	these	intersection	points	have	imaginary	x-coordinates,	the	proof	
proceeds	 in	 exactly	 the	 same	way	 as	 it	 does	when	 the	 intersection	points	
are	on	 the	Euclidean	plane:	The	 two	points	 lie	on	 the	 line	y	=	0,	which	 is	
on	the	Euclidean	plane,	and	for	any	point	on	this	line,	the	two	tangents	are	
equal	(Sawyer	1955,	180−181).	I	agree	with	Sawyer	(1943,	232)	that	complex	
numbers	reveal	“the	reasons	for	results	which	had	previously	seemed	quite	
accidental”.	

are	often	impure,	mathematical	explanations	often	fail	to	specify	the	
grounds	of	the	theorem	being	explained.11 

Arguably,	 a	 pure	 proof	 is	 roughly	 a	 proof	 that	 proceeds	 entirely	
from	 facts	about	 the	essences	of	 the	mathematical	 items	figuring	 in	
the	theorem	being	proved.	For	instance,	the	fact	that	n!/k!(n−k)!	is	an	
integer	(for	natural	numbers	n	and	k	where	n ≥ k)	could	be	proved	by	
showing	that	the	formula	gives	the	number	of	ways	to	choose	a	subset	
of	k	from	a	set	of	n.	But	because	this	proof	does	not	proceed	entirely	
in	arithmetic	terms,	it	 is	regarded	by	mathematicians	as	impure;	the	
essences	of	all	of	 the	 items	figuring	 in	 the	 theorem	are	arithmetical.	
Some	philosophers	have	held	that	if	a	fact	follows	from	the	essences	
of	the	items	figuring	in	it,	then	that	fact	is	grounded	in	facts	about	their	
essences.	 For	 instance,	Rosen	 (2010,	 119)	 suggests	 that	 the	 fact	 that	
every	triangle	has	three	angles	is	grounded	in	the	fact	that	having	three	
angles	is	part	of	what	it	is	to	be	a	triangle		is	essential	to	triangularity.	
This	view	is	an	alternative	(exclusively	 for	 those	universal	 facts	 that	
are	necessary)	 to	 the	picture	of	 the	grounds	of	universal	 facts	 that	 I	
mentioned	in	the	previous	section,	according	to	which	universal	facts	
are	grounded	in	their	instances.	

Nevertheless,	 the	explanatory	proof	of	 the	Taylor	 series	 theorem	
does	not	proceed	entirely	from	the	essences	of	the	items	figuring	in	the	
theorem,	because	those	essences	do	not	involve	imaginary	numbers.	
That	it	is	not	unusual	for	explanatory	proofs	to	be	impure,	even	when	

11.	 Although	 a	 proof’s	 purity	 need	 not	 contribute	 to	 its	 explanatory	 power,	
purity	is	nevertheless	a	feature	that	mathematicians	often	seek	and	prize	in	
proofs.	Purity	and	explanatory	power	are	both	virtues	in	proofs,	as	are	brevity,	
generalizability,	simplicity,	visualizability,	theoretical	fruitfulness,	pedagogic	
value,	and	so	forth.	With	so	many	(perhaps	incommensurable)	virtues,	there	
may	be	no	sense	in	which	one	proof	 is	“better”,	all	 things	considered,	than	
another.

	 	 Nothing	 I	 have	 said	 has	 ruled	 out	 the	 possibility	 that	 in	 some	 cases,	 a	
proof’s	purity	does	 contribute	 to	 its	explanatory	power		 or,	 at	 least,	 that	
searching	for	a	pure	proof	is	a	useful	heuristic	for	finding	an	explanatory	proof.	
(Detlefsen	and	Arana	(2011,	8,	fn.	31)	give	an	example	where	a	pure	proof	is	
sought	and	this	search	is	cited	as	a	possible	means	for	finding	an	explanatory	
proof.)	In	the	same	way,	the	search	for	a	visualizable	proof	may	sometimes	be	
a	useful	heuristic	for	finding	an	explanatory	proof.	Nevertheless,	purity	(and	
visualizability)	would	remain	distinct	virtues	from	explanatory	power.	
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motion).	A	 separate	derivation	 from	other	 fundamental	 laws	 shows	
that	electrostatic	 forces	conserve	energy.	These	separate	derivations	
identify	the	more	fundamental	laws	in	virtue	of	which	it	is	true	that	each	
of	these	two	interactions	conserves	energy.	These	more	fundamental	
laws	are	the	grounds	of	the	fact	that	the	two	forces	conserve	energy.	
But	 these	 two	 separate	 derivations	 treat	 it	 as	 a	 coincidence	 that	
these	 two	 forces	 share	 this	 feature.	 In	 fact,	 many	 physicists	 have	
maintained	 that	 it	 is	no	 coincidence:	The	 two	 forces	both	 conserve	
energy	because	every	force	has	got	to	conserve	energy	(Lange	2016).	
Energy	conservation	arises	from	a	fundamental	spacetime	symmetry	
meta-law	that	constrains	the	fundamental	force	laws	(requiring	them	
all	 to	be	 invariant	under	arbitrary	 time	 translations)	 so	 that	 (within	
a	 Lagrangian	 framework)	 every	 fundamental	 force	 must	 conserve	
energy.	Because	gravitational	 and	electrostatic	 forces	both	 conserve	
energy	for	the	same	reason,	it	is	no	coincidence	that	they	both	do.	The	
separate	grounds	of	the	two	derivative	laws	fail	to	explain	why	they	
are	alike	in	both	conserving	energy.

Scientific	examples	like	this	motivate	giving	a	similar	interpretation	
to	 various	 mathematical	 examples.	 Consider	 a	 result14	 regarding	
exponentiation	 (the	 binomial	 theorem)	 and	 a	 result	 regarding	
differentiation	(the	general	Leibniz	rule):

A result regarding powers:	If	f	and	g	are	numbers	and	n	is	a	
natural	number,	then	the	binomial	theorem	says	that	

where	 =	n!	/	k!(n−k)!

14.	 I	originally	discussed	 this	 result	 in	Lange	2015b,	 though	not	 in	connection	
with	grounding’s	relation	to	mathematical	explanation.	

coordinates	 to	 various	 points	 and	 then	 showing	 by	 calculation	 that	
the	tangent	from	a	point	on	the	given	line	to	one	circle	is	equal	to	the	
tangent	from	a	point	on	the	given	line	to	the	other	circle.	It	proceeds	
by	(what	mathematicians	call)	“brute	force”.	Such	examples13	suggest	
that	oftentimes,	a	proof	 that	 identifies	 the	 theorem’s	ground	will	be	
a	 brute-force	 proof	 and	 that	 oftentimes,	 brute-force	 proofs	 do	 not	
explain.	They	simply	grind	out	the	result	from	the	essential	properties	
of	the	set	up.	Their	purity	is	not	enough	to	make	them	explanatory.	(In	
the	next	section,	I	will	return	to	the	tension	between	a	proof’s	being	
explanatory	and	its	proceeding	by	brute	force.)	

I	have	argued	that	some	mathematical	proofs	are	not	explanatory,	
despite	 identifying	 the	 grounds	 of	 the	 theorem	 being	 explained,	
because	they	proceed	by	brute	force	from	those	grounds	and	thereby	
fail	to	reveal	the	way	that	the	theorem’s	various	cases	are	unified.	Hence,	
the	 proof’s	 identifying	 the	 grounds	 of	 the	 theorem	being	 explained	
gets	in	the	way	of	the	proof’s	being	explanatory.	Another,	indirect	way	
to	argue	that	this	occurs	in	mathematical	explanation	is	to	show	that	
the	same	thing	happens	sometimes	in	scientific	explanation.	One	way	
for	such	an	example	to	arise	in	science	is	for	several	derivative	laws	
of	nature	to	possess	the	same	feature,	where	each	of	these	derivative	
laws	 can	 be	 derived	 separately	 from	 its	 own	 grounds	 (that	 is,	 from	
the	 relevant	 fundamental	 laws)	 and	 where	 the	 various	 derivative	
laws	differ	in	their	grounds.	The	derivation	thus	treats	the	similarity	
among	 the	derivative	 laws	as	 a	 coincidence;	 it	 traces	 the	derivative	
laws	 to	no	 common	 source	 that	 accounts	 for	 their	 common	 feature.	
However,	if	the	similarity	among	the	various	derivative	laws	is	in	fact	
no	coincidence,	then	each	of	those	laws	exhibits	the	common	feature	
for	the	same	reason.	A	derivation	from	that	source	fails	to	identify	the	
grounds	of	the	derivative	laws,	but	it	explains	why	they	are	similar.	

	 For	 example,	 gravitational	 and	electrostatic	 forces	 are	 similar	 in	
that	both	conserve	energy.	The	fact	that	gravitational	forces	conserve	
energy	 follows	 from	 the	 gravitational	 force	 law	 (and	 the	 laws	 of	

13.	 Coordinate	 geometry	 can	 likewise	 prove	 Desargues’	 theorem	 in	 two-
dimensional	Euclidean	geometry	(see	note	9)	by	“brute	force”.
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As	 Gregory	 (1841,	 iv)	 put	 it,	 the	 similarity	 is	 not	 “founded	 on	
accidental	 analogy”.	 Just	 as	 there	 is	 a	 common	 reason	 why	 both	
gravitation	 and	 electrostatic	 forces	 conserve	 energy,	 so	 there	 is	 a	
common	reason	why	exponentiation	and	differentiation	are	alike	 in	
the	respect	exhibited	by	the	expansion	theorem.	The	two	operations	
are	 alike	 in	 this	 respect	 because	 they	 are	 alike	 in	 obeying	 (what	
Gregory	called)	the	same	three	laws	of	combination:

From	the	fact	that	exponentiation	obeys	these	three	laws,	the	binomial 
theorem	follows,	and	in	the	very	same	way,	the	product	rule	follows	
from	 the	 fact	 that	 differentiation	 obeys	 these	 three	 laws.	 Thus,	 as	
Gregory	 (1841,	 237)	 put	 it,	 both	 of	 these	 results	 “depend	 only	 on	
the	 laws	of	 combination	 to	which	 the	 symbols	 are	 subject,	 and	 are	
therefore	 true	 of	 all	 symbols,	whatever	 their	 nature	may	 be,	which	
are	 subject	 to	 the	 same	 laws	 of	 combination”.15	 I	 interpret	 Gregory,	
in	 referring	 to	 “dependence”,	 to	 be	 talking	 about	 mathematical	
explanation.	 The	 grounds	 of	 the	 two	 separate	 theorems	 do	 not	
combine	to	mathematically	explain	why	their	conjunction	holds.16 

15.	 Today	we	would	put	 the	point	 in	 terms	of	 the	expansion	 theorem	holding	
of	 any	 commutative	 ring.	 (Presumably,	Gregory	 is	 best	 understood	 as	 not	
literally	meaning	“symbols”	here,	since	the	same	result	could	be	expressed	in	
many	symbols,	and	in	each	case	it	would	obtain	for	the	same	reason.	Shortly	
I	 quote	 Boole,	who	 does	 better	 in	 referring	 to	 the	 explanation	 as	 lying	 in	
common	features	of	the	two	operations,	exponentiation	and	differentiation,	
not	of	their	symbols.)

16.	 Regarding	the	“dependence”	of	the	expansion	theorem	on	the	three	“laws	of	

A result regarding derivatives:	If	f(x)	and	g(x)	are	n-times	dif-
ferentiable	functions	of	real	numbers	x,	and	if	f(n)	=	(dnf)/
(dxn)	is	the	nth	derivative	of	 f	(and	the	0th	derivative	of	 f 
is	 f),	 then	a	generalization	of	 the	product	rule	(“general	
Leibniz	rule”)	says	that

Leibniz	 noticed	 the	 striking	 analogy	 between	 these	 two	 results	 as	
early	as	1695;	he	even	argued	in	a	1697	letter	to	Wallis	that	his	notation	
was	better	than	Newton’s	because	it	makes	this	analogy	more	salient	
(Koppelman	 1971,	 157−158).	 As	 Koppelman	 (1971,	 171)	 puts	 it,	 the	
similarity	“certainly	calls	for	an	explanation”.	Johann	Bernoulli	wrote	
to	Leibniz	in	1695:	“Nothing	is	more	elegant	than	the	agreement	you	
have	observed	…	doubtless	there	is	some	underlying	secret”	(Leibniz	
2004,	398).

The	conjunction	of	these	two	expansion	theorems	is	grounded	in	
its	conjuncts.	We	could	derive	the	binomial	theorem	from	its	ground,	
involving	 what	 exponentiation	 is.	 We	 could	 likewise	 derive	 the	
general	Leibniz	 rule	 from	 its	 ground,	 including	what	differentiation	
is.	 But	 Bernoulli	 recognized	 that	 those	 derivations	 do	 not	 supply	
the	underlying	 “secret”	he	wondered	about.	These	are	 two	separate	
derivations;	what	a	derivative	amounts	to	plays	no	role	in	the	ground	
of	the	binomial	theorem.	So	these	two	separate	derivations	treat	the	
analogy	between	 these	 two	 results	 as	 a	 coincidence.	 But	 in	 fact,	 as	
Bernoulli	 suspected,	 the	 analogy	 has	 a	 common	 origin,	 and	 so	 the	
analogy	 is	no	 coincidence.	 Its	 explanation	 in	mathematics	does	not	
work	by	tracing	the	similarity’s	grounds.
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Once	again,	I	take	the	kind	of	“dependence”	that	Boole	is	talking	about,	
where	 the	binomial	and	general	Leibniz	rules	“depend”	only	on	the	
laws	of	combination,	to	be	a	kind	of	explanation	that	is	not	supplied	by	
the	grounds.	Exponentiation	and	differentiation	obey	the	same	laws	
of	expansion	because	they	obey	the	same	three	laws	of	combination.

This	 example	 illustrates	 how	 grounds	 often	 fail	 to	 explain	 in	
mathematics	for	something	like	the	same	reason	as	grounds	often	fail	
to	explain	in	science.	As	I	mentioned	at	the	end	of	section	1,	we	could	
simply	stipulate	that	grounds,	in	virtue	of	being	grounds,	give	a	special	
kind	of	explanation:	grounding	explanation.	But	as	we	have	seen,	this	is	
not	explanation	as	it	figures	in	mathematical	practice.	

It	might	be	objected	that	exponentiation’s	obeying	the	three	laws	
of	 combination	 grounds	 exponentiation’s	 expansion	 theorem	 and	
that	differentiation’s	obeying	the	three	laws	of	combination	grounds	
differentiation’s	 expansion	 theorem.	 On	 this	 view,	 the	 fact	 that	
exponentiation	and	differentiation	are	alike	with	respect	 to	obeying	
the	three	laws	of	combination	both	grounds	and	explains	their	being	
alike	with	respect	to	obeying	the	expansion	theorem.	

However,	 I	 see	 no	 reason	 (beyond	 the	 fact	 that	 the	 laws	 of	
combination	entail	the	expansion	theorem)	to	say	that	an	operation’s	
obeying	 the	 three	 laws	 of	 combination	 grounds	 its	 expansion	
theorem.	I	see	no	reason	to	resist	the	thought	that	just	as	each	of	the	
three	 combination	 laws	 for	 the	operation	 is	 grounded	 separately	 in	
the	operation’s	essence,	so	 the	expansion	 theorem	is	also	grounded	
separately	 in	 the	 operation’s	 essence	 	 with	 none	 of	 these	 four	
helping	 to	 ground	 another.	 This	 characterization	 is	 supported	 by	 a	
comparison	 to	 the	 scientific	 case.	 A	 spacetime	 symmetry	 principle	
does	not	help	to	ground	the	fact	that	the	gravitational	force	conserves	
energy.	 Rather,	 the	 gravitational	 force’s	 essence	 (specified	 by	 the	
fundamental	 gravitational	 force	 law)	 grounds	 its	 conserving	 energy,	
and	the	force	law	neither	helps	to	ground	nor	is	partly	grounded	by	
a	spacetime	symmetry	principle.	That	the	gravitational	force	exhibits	
a	certain	spacetime	symmetry	(namely,	that	its	force	law	is	invariant	

Other	commentators	have	made	the	same	observations	as	Gregory.	
For	 example,	 François-Joseph	 Servois	 (1814−15,	 142)	 said	 regarding	
the	analogy,	“It	is	necessary	to	find	the	cause,	and	everything	is	very	
happily	 explained”.	 That	 the	 two	 operations	 obey	 the	 same	 laws	 of	
combination	 is,	 he	 said,	 “la	 véritable	 origine”	 (151)	 of	 the	 analogy	
between	 the	 two	 results.	 Separate,	 unrelated	derivations	of	 the	 two	
results	would	prove	 them	and	display	 their	grounds,	but	would	not	
explain	why	their	conjunction	holds.	As	Boole	(1841,	119)	said	of	the	
analogy	deployed	to	solve	a	linear	differential	equation	by	solving	an	
algebraic	equation	and	then	exchanging	powers	for	derivatives:	

The	 analogy	 …	 is	 very	 remarkable,	 and	 unless	 we	
employed	 a	 method	 of	 solution	 common	 to	 both	
problems,	 it	would	not	be	easy	to	see	the	reason	for	so	
close	a	resemblance	in	the	solution	of	two	different	kinds	
of	equations.	But	the	process	which	I	have	here	exhibited	
shows,	that	the	form	of	the	solution	depends	solely	on	…	
processes	which	are	common	to	the	two	operations	under	
considerations,	being	founded	only	on	the	common	laws	
of	the	combination	of	the	symbols.	

combination”,	one	might	initially	be	tempted	to	interpret	Gregory	and	Boole	
(below)	as	talking	about	grounding.	However,	notice	that	Gregory	and	Boole	
emphasize	that	the	expansion	theorem	depends	only	on	the	two	operations’	
having	those	three	“laws	of	combination”	in	common.	The	tacit	contrast	they	
are	drawing	 is	with	 the	expansion	 theorem	depending	also	on	what	 those	
operations	are	−	on	(as	Gregory	puts	it)	the	“nature”	of	exponentiation	and	
the	“nature”	of	differentiation.	Now	presumably,	the	fact	that	exponentiation,	
for	 instance,	 obeys	 a	 given	 law	of	 combination	 is	 itself	 grounded	 in	what	
exponentiation	is.	So	if	the	“dependence”	of	the	expansion	theorem	on	the	
laws	of	combination	were	also	a	matter	of	grounding,	then	by	the	transitivity	
of	grounding,	the	expansion	theorem	would	also	“depend”	on	the	natures	of	
exponentiation	and	differentiation,	losing	the	tacit	contrast	that	Gregory	and	
Boole	are	drawing.	(Virtually	all	accounts	of	grounding	regard	grounding	as	
transitive	(Correia	and	Schnieder	2012,	32),	as	long	as	any	implicit	contrasts	
properly	line	up	(Schaffer	2016,	55)		that	is,	as	long	as	the	fact	that	G	rather	
than	G´	grounds	the	fact	that	H	rather	than	H´,	and	the	fact	that	H	rather	than	
H´	grounds	the	fact	that	J	rather	than	J´.)
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coincidental	 rather	 than	 unifying	 that	 result’s	 various	 components	
in	the	way	that	certain	scientific	explanations	unify.	Of	course,	a	full	
account	of	 explanation	 in	mathematics	goes	well	beyond	 the	 scope	
of	 this	 paper.	 But	 a	 sketch	 of	 such	 an	 account	 would	 support	 my	
arguments	in	the	previous	section.	In	addition,	the	account	I	will	now	
sketch	 suggests	 two	 further	 arguments	 that	mathematical	 theorems	
are	 not	 automatically	 explained	 by	 their	 grounds.	 I	 will	 give	 those	
arguments	in	section	4.

To	 motivate	 my	 proposed	 account	 of	 mathematical	 explanation,	
consider	this	theorem	first	proved	by	d’Alembert:17

If	the	complex	number	(where	a	and	b	are	real)	is	a	solu-
tion	to	zn+	an-1 z

n-1 +	…	+	a0=	0	(where	the	ai are	real),	then	
z’s	“complex	conjugate”	 z̅ =	a – bi is	also	a	solution.

Why	do	the	solutions	of	a	polynomial	equation	with	real	coefficients	
come	in	these	complex-conjugate	pairs?	It	is	easy	to	prove	that	they	do.	
First,	we	can	use	straightforward	calculation	to	show	that	we	get	the	
same	result	whether	we	multiply	two	complex	numbers	and	then	take	
their	complex	conjugate	or	whether	we	go	 in	 the	opposite	order	by	
taking	the	numbers’	complex	conjugates	and	then	multiplying	them:	

Show that  z̅ w̅ = z̅w̅:

Hence,	 ,	and	likewise	for	all	other	powers.	Therefore,	
.	 We	 can	 likewise	 use	

17.	 I	 have	 given	 this	 example,	 along	 with	 a	 more	 extended	 defense	 of	 the	
proposal	that	I	am	about	to	make,	in	Lange	(2016).

under	 arbitrary	 time	 translations)	 and	 that	 it	 conserves	 energy	 are	
separately	grounded	in	what	gravitation	is.		

Furthermore,	 set	 the	 above	 argument	 aside	 and	 suppose	
exponentiation’s	 three	 laws	 of	 combination	 were	 grounding	
exponentiation’s	expansion	theorem	and	were	grounded,	in	turn,	by	
what	exponentiation	essentially	is		and	similarly	for	differentiation.	
Then	 it	would	be	puzzling	 (if	explanation	 in	mathematics	works	by	
supplying	information	about	how	a	mathematical	fact	arises	from	its	
grounds)	why	the	fact	that	the	two	operations	are	alike	with	respect	
to	obeying	the	expansion	theorem	is	not	mathematically	explained	by	
what	exponentiation	essentially	is	and	what	differentiation	essentially	
is.	 But	 I	 have	 argued	 that	 this	 is	 no	 explanation	 in	 mathematical	
practice.

3. What Makes a Proof Explanatory? 

I	have	now	given	several	reasons	why	it	is	typical	for	proofs	identifying	
a	mathematical	result’s	grounds	not	to	explain	why	that	result	holds,	
whereas	 an	explanatory	proof	of	 the	 same	mathematical	 result	 fails	
to	 identify	 its	grounds.	The	reasons	I	have	given	for	this	divergence	
between	 grounding	 and	 mathematically	 explaining	 are	 that	 proofs	
identifying	 the	 result’s	 grounds	 can	 incorrectly	 depict	 the	 result	 as	
coincidental,	must	be	pure,	and	often	proceed	by	brute	force.	I	have	
also	 argued	 that	 the	 unification	 that	 mathematical	 explanations	
frequently	 reveal,	precisely	by	 failing	 to	 specify	 the	 result’s	grounds,	
is	 similar	 to	 the	 unification	 that	 scientific	 explanations	 frequently	
achieve	by	failing	to	identify	the	result’s	grounds.	

In	this	section,	I	will	approach	all	of	these	matters	from	a	different	
direction:	 by	 asking	more	 generally	what	makes	 one	 proof	 but	 not	
another	 explanatory	 in	 mathematics.	 An	 account	 of	 this	 difference	
should	 account	 for	 the	 differences	 in	 explanatory	 power	 between	
the	 various	 proofs	 we	 have	 just	 looked	 at.	 A	 general	 account	 of	
mathematical	explanation	should	also	account	 for	whatever	 tension	
there	 may	 be	 between	 a	 proof’s	 explanatory	 power	 and	 its	 purity,	
its	 proceeding	 by	 brute	 force,	 or	 its	 treating	 the	 result	 it	 proves	 as	
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In	 this	example,	a	proof	 is	explanatory	because	 it	exploits	a	sym-
metry	in	the	problem		a	symmetry	of	the	same	kind	as	initially	struck	
us	in	the	fact	being	explained.	I	propose	to	generalize	this	diagnosis	
of	why	the	two	proofs	of	d’Alembert’s	theorem	differ	in	their	explana-
tory	power.	Although	 the	 symmetry	between	 i and	–i is	 the	 feature	
of	d’Alembert’s	theorem	that	initially	jumped	out	at	us,	a	result	could	
have	 some	 other	 sort	 of	 salient	 feature.	 That	 feature	 of	 the	 result	
prompts	a	“why”	question	that	would	be	answered	by	a	proof	deriv-
ing	that	result	from	a	feature	of	the	set	up	that	is	similar	to	the	result’s	
salient	feature.	On	this	proposal,	to	ask	why the	result	holds	is	to	ask	
for	a	proof	that	exploits	a	certain	kind	of	feature	in	the	set	up:	exactly	
the	same	kind	of	feature	that	stands	out	in	the	result.	The	distinction	
between	proofs	that	explain	and	proofs	that	merely	prove	exists	only	
when	some feature	of	the	result	is	salient.	That	feature’s	salience	can	
privilege	some	proof	as	explanatory.19 

This	 proposal	 accounts	 for	 the	 difference	 in	 explanatory	 power	
between	the	two	proofs	(in	section	1)	of	the	fact	that	7	appears	50,000	
times	between	1	and	99,999.	The	striking	thing	about	this	fact,	as	we	
saw,	is	that	the	number	of	7’s	is	one-half	of	100,000,	which	is	just	one	
more	than	99,999.	The	first	proof	simply	tallied	all	of	the	appearances	
of	7’s,	and	so	although	it	gave	the	theorem’s	grounds,	it	did	not	derive	
the	theorem	by	exploiting	a	feature	of	the	problem	(“How	many	times	
does	7	appear…?”)	that	is	similar	to	the	salient	feature	of	the	result.	By	
contrast,	the	second	proof	construes	the	set	up	so	that	it	is	solved	by	
multiplying	100,000	by	5	digits	per	number	divided	by	10	options	for	
each	digit		that	is,	by	one-half.	This	proof	explains,	then,	by	virtue	of	
tracing	the	one-half	of	100,000	that	is	the	result’s	striking	feature	to	a	
similar	feature	of	the	set	up.	

19.	 Obviously,	 I	cannot	hope	to	defend	this	proposal	properly	here;	see	Lange	
(2016).	 Even	 if	 this	 proposal	 is	 not	 fully	 satisfactory	 as	 it	 stands,	 I	 hope	 it	
shows	how	a	more	general	account	of	mathematical	explanation	could	be	
used	 to	 support	 the	 previous	 section’s	 argument	 that	 mathematical	 expla-
nation	and	grounding	typically	diverge		and	can	suggest	additional	argu-
ments	for	this	conclusion	(such	as	those	given	in	the	next	section).	

direct	calculation	to	show	that	summation	and	complex	conjugation	
can	be	taken	in	either	order:	

 

 

Thus, , which	 equals	 0	
and	hence	0	if	z	is	a	solution	to	the	original	equation.	

Although	we	have	just	proved	that	the	complex	conjugate	of	one	
solution	 is	another	solution,	 this	proof	 takes	a	brute-force	approach.	
The	theorem’s	striking	feature	is	that	the	equation’s	nonreal	solutions	
come	in	pairs	where	one	member	of	the	pair	can	be	transformed	into	
the	other	by	the	replacement	of	i	with	–i.	Why	does	exchanging	i	for		

–i in	a	solution	leave	us	with	another	solution?	The	proof	we	just	saw	
depicts	this	symmetry	as	just	turning	out	that	way	when	we	plug	and	
chug.	A	derivation	of	the	theorem	from	a	similar	symmetry	in	the	orig-
inal	problem	is	what	would	explain why	the	theorem	holds.	That	is,	an	
explanation	of	the	theorem	would	be	a	proof	that	exploits	the	invari-
ance	of	the	set	up	under	the	replacement	of	i with	–i.	

The	sought-after	explanation18	is	that	–i	could	play	exactly	the	same	
roles	in	the	axioms	of	complex	arithmetic	as	i	plays.	Each	has	the	same	
definition:	Each	is	exhaustively	captured	as	being	such	that	its	square	
equals	–1.	There	is	nothing	more	to	i (and	to	–i)	than	that.	Of	course,	
i and	–i	are	not	equal.	But	 they	are	no	different	 in	 their	relations	to	
the	 real	 numbers.	Whatever	 the	 axioms	 of	 complex	 arithmetic	 say	
about	 one	 can	 also	be	 truly	 said	 about	 the	other.	 Since	 the	 axioms	
remain	true	under	the	replacement	of	i	with	–i,	so	must	the	theorems	
	for	example,	any	fact	about	the	roots	of	a	polynomial	with	real	coef-
ficients.	(The	coefficients	must	be	real	so	that	the	transformation	of	i 
into	–i leaves	the	polynomial	unchanged.)	The	symmetry	expressed	
by	d’Alembert’s	theorem	arises	from	the	same	symmetry	in	the	axioms	
of	complex	arithmetic.	

18.	 See	Feynman	et	al.	(1963,	22−7).
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The	 result’s	 salient	 feature	 is	 that	 it	 identifies	 a	 property	 shared	
by	 the	 two	 series	 (namely,	 their	 convergence	 behavior).	 The	 proof	
appealing	to	the	radius	of	convergence	theorem	is	explanatory	because	
in	appealing	to	each	series’	possessing	a	singularity	on	the	complex	
plane’s	unit	circle,	this	proof	exploits	a	property	that	is	shared	by	the	
two	series	and	is	thus	similar	to	the	result’s	salient	feature.

Likewise,	 the	 striking	 thing	 about	 the	 theorem	 concerning	 expo-
nentiation	 and	 differentiation,	 as	 Leibniz	 and	 Bernoulli	 remarked,	
is	that	it	 identifies	a	respect	in	which	the	two	operations	are	similar.	
Therefore,	 proofs	 that	 treat	 the	 two	 operations	 separately	 fail	 to	 ex-
plain	why	exponentiation	and	differentiation	are	alike	in	this	respect.	
By	contrast,	the	theorem	is	explained	when	the	similarity	it	displays	
is	derived	uniformly	from	another	similarity	between	exponentiation	
and	differentiation		namely,	that	they	obey	the	same	three	“rules	of	
combination”.	

In	this	way,	the	proposal	I	have	sketched	concerning	the	source	of	
a	proof’s	explanatory	power	accounts	for	the	way	that	a	proof’s	having	
explanatory	 power	may	 fail	 to	 require	 its	 purity,	may	 be	 precluded	
by	 its	 taking	 a	 brute-force	 approach,	 and	 may	 be	 undercut	 by	 its	
treating	 the	result	 it	proves	as	coincidental	 (instead	of	unifying	 that	
result’s	various	components	in	the	same	manner	as	certain	scientific	
explanations	do).	This	proposal	thus	accounts	for	the	divergence	that	
we	have	seen	between	grounding	and	mathematically	explaining.		

	On	 this	account,	a	proof	deriving	 the	 theorem	 from	 its	grounds	
may	explain,	but	its	specifying	the	theorem’s	grounds	would	then	be	
incidental	 to	 its	 explanatory	 power.	 It	would	 derive	 its	 explanatory	
power	not	by	virtue	of	tracing	the	theorem	to	its	grounds,	but	rather	
by	virtue	of	tracing	the	theorem	to	a	feature	of	the	set	up	that	is	like	the	
theorem’s	salient	feature.	

corresponding	sides	are	projections	of	lines	on	the	same	two	planes		which	
must	intersect	in	a	line.	Although	the	proof	exiting	to	the	third	dimension	is	
impure,	it	explains	by	showing	how	the	theorem’s	salient	feature	arises	from	
a	similar	salient	feature	in	the	set	up.	

The	 proof	 identifying	 this	 theorem’s	 grounds	 proceeds	 by	 brute	
force.	On	this	proposal,	no	brute-force	proof	is	explanatory	when	the	
salient	feature	of	the	theorem	being	explained	is	its	symmetry	(as	in	
d’Alembert’s	 theorem)	or	some	other	such	feature	 that	a	brute-force	
proof	 fails	 to	 exploit.	 A	 brute-force	 approach	 is	 not	 selective	 in	 its	
focus;	it	simply	plugs	everything	in	and	calculates	everything	out.	By	
contrast,	 an	explanation	must	 (on	 this	proposal)	pick	out	particular	
features	of	 the	 set	up	 that	 are	 similar	 to	 the	 result’s	 salient	 features,	
tracing	the	result’s	salient	feature	back	to	them.		

This	 proposal	 can	 also	 account	 for	 the	 difference	 in	 explanatory	
power	between	the	two	proofs	that	the	two	Taylor	series	exhibit	the	
same	convergence	behavior.	What	strikes	us	as	remarkable	about	the	
theorem	is	that	it	identifies	a	feature	that	is	common	to	the	two	Taylor	
series,	despite	the	obvious	differences	between	the	two	functions.	In	
this	context,	the	point	of	asking	for	an	explanation	is	to	ask	for	a	proof	
that	treats	the	two	series	alike,	deriving	their	convergence	behavior	in	
the	same	way	from	some	other	feature	that	the	two	functions	share.	A	
proof	that	treats	the	two	series	separately,	even	if	it	is	pure	and	reveals	
the	theorem’s	grounds,	fails	to	explain	because	it	fails	to	derive	the	two	
series’	 convergence	behavior	 in	 the	 same	way	 from	another	 feature	
that	the	two	functions	share.	By	contrast,	the	proof	using	the	radius	of	
convergence	theorem	treats	the	two	functions	together,	deriving	their	
common	convergence	behavior	from	another	feature	that	they	share	 
namely,	that	they	go	undefined	somewhere	on	the	unit	circle	centered	
at	the	origin	of	the	complex	plane.	This	proof’s	impurity	allows	it	to	
explain	why	the	theorem	holds.20 

20.	The	 case	of	Desargues’	 theorem	 (see	notes	 9	 and	 13)	 is	 similar	 (following	
Lange	2015a).	A	brute-force	proof	using	homogeneous	coordinates	just	plugs	
everything	 in	and	 turns	 the	meat	grinder.	By	contrast,	a	 striking	 feature	of	
Desargues’	 theorem	 is	 that	 it	 identifies	 something	 common	 to	 all	 three	of	
the	intersections	of	the	corresponding	sides	of	the	two	triangles	in	perspec-
tive		namely,	 that	each	of	 those	 intersections	 falls	on	the	same	 line.	The	
proof	 of	Desargues’s	 theorem	 that	 exits	 to	 the	 third	 dimension	 allows	 the	
two	coplanar	 triangles	 in	perspective	 to	be	 the	projections	of	 triangles	on	
different	planes.	The	proof	derives	 the	 similarity	among	 the	 three	pairs	of	
corresponding	sides	from	another	such	similarity:	that	in	each	case,	the	two	
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view	that	a	theorem’s	grounds	do	not	generally	explain	why	it	obtains.	
This	argument	emphasizes	the	role	that	the	proposed	account	assigns	
to	the	salience	of	some	feature	possessed	by	the	given	theorem.	

On	 this	 account,	whether	 a	 given	 proof	 qualifies	 as	 explanatory	
(indeed,	 whether	 there	 is	 any	 distinction	 between	 explanatory	
and	 non-explanatory	 proofs	 of	 some	 theorem)	 depends	 on	 some	
feature(s)	 of	 the	 theorem	 being	 salient.	 For	 example,	 when	 we	
encountered	 d’Alembert’s	 theorem	 (in	 section	 3),	 its	 salient	 feature	
was	the	symmetry	between	i and	–i that	it	identifies	in	the	solutions	to	
polynomial	equations.	The	salient	feature	of	the	theorem	concerning	
exponentiation	and	differentiation	 (in	 section	2)	was	 its	 revealing	a	
respect	 in	which	the	two	operations	are	alike.	The	salient	 feature	of	
the	theorem	(in	section	1)	that	7	appears	50,000	times	in	a	list	of	the	
numbers	from	1	to	99,999	is	that	50,000	is	half	of	100,000,	which	is	
nearly	99,999.	

Which	feature	of	a	theorem	is	salient	(and	whether	it	has	any	salient	
feature	at	all)	depends	on	the	context.	Indeed,	as	the	conversational	
context	 shifts,	 a	 feature	 that	 had	 been	 salient	 can	 retreat	 into	 the	
background	 as	 a	 new	 feature	becomes	 salient.	My	 account	 predicts	
that	when	that	happens,	there	may	be	a	corresponding	shift	in	which	
proof	(if	any)	qualifies	as	explanatory.

This	prediction	is	borne	out	in	mathematical	practice.	Let’s	look	at	
an	example.22 

Ask	your	friends	to	select	any	two	numbers	and	to	insert	one	in	the	
first	row	and	the	other	in	the	second	row	of	the	following	table:	

22.	 I	discussed	this	example	in	Lange	2016	to	make	a	different	point.	

4. Two Further Arguments that Grounds do not Explain. 

The	account	of	mathematical	explanation	I	have	just	sketched	suggests	
two	further	arguments	 for	 the	view	that	mathematical	 theorems	are	
not	automatically	explained	by	their	grounds.		

According	 to	 the	account	 I	have	 just	 sketched,	 if	 a	mathematical	
result	 exhibits	 no	 striking	 feature	 at	 all,	 then	 there	 is	 nothing	 that	
its	explanation	over	and	above	 its	proof	would	amount	 to.	 In	other	
words,	there	is	nothing	that	it	would	mean	to	ask	why	the	result	holds,	
over	and	above	asking	for	a	proof	of	the	result.	Likewise,	the	account	
entails	that	a	mathematical	result	exhibiting	some	striking	feature	may	
have	no	proof	exploiting	a	similar	feature	of	the	setup,	in	which	case	
the	result	has	no	mathematical	explanation.

These	 consequences	 of	 the	 proposed	 account	 seem	 correct.	
Mathematicians	who	are	trying	to	explain	why	a	given	theorem	holds,	
prompted	by	the	theorem’s	exhibiting	some	striking	feature,	routinely	
acknowledge	that	the	theorem	may	in	fact	have	no	proof	that	explains	
why	 it	 holds.	 For	 example,	 after	 asking	why	 the	 two	Taylor	 series	 I	
discussed	 earlier	 have	 the	 same	 convergence	 behavior,	 despite	 the	
stark	differences	between	the	two	functions,	Spivak	(1980,	482)	says,	
“Asking	this	sort	of	question	is	always	dangerous,	since	we	may	have	to	
settle	for	an	unsympathetic	answer:	it	happens	because	it	happens	 
that’s	the	way	things	are!”	(Of	course,	he	goes	on	to	point	out,	“In	this	
case	there	does	happen	to	be	an	explanation	…”		namely,	involving	
the	impure	proof	appealing	to	the	radius	of	convergence	theorem.)21 

However,	if	a	mathematical	theorem	were	automatically	explained	
by	its	grounds,	then	every	theorem,	no	matter	how	pedestrian,	would	
have	an	explanation.	This	seems	contrary	to	mathematical	practice.	It	
would	make	Spivak	incorrect	in	acknowledging	that	a	given	theorem	
having	a	salient	feature	might	turn	out	to	have	no	explanation.	

I	will	conclude	this	paper	by	describing	how	the	previous	section’s	
account	of	explanatory	proofs	supplies	yet	another	argument	for	the	

21.	 Gale	(1991,	41)	also	acknowledges	that	a	theorem,	although	proved,	need	not	
have	an	explanatory	proof.
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To	see	 if	your	success	was	 just	a	fluke,	your	 friends	may	ask	you	
to	 perform	 your	 feat	 beginning	 with	 different	 numbers	 (and	 even	
with	fractions	or	negative	numbers).	Eventually,	you	will	divulge	your	
secret:	that	for	any	initial	two	numbers,	the	grand	total	equals	11	times	
the	entry	in	row	7.	Your	audience	will	presumably	then	want	to	know	
why	this	theorem	holds.	In	this	sort	of	context,	the	theorem’s	salient	
feature	is	obviously	that	it	allows	your	trick	to	work	for	any	two	initial	
numbers.	In	asking	why	the	trick	works,	your	audience	wants	to	know	
whether	this	similarity	among	the	theorem’s	cases	is	a	coincidence	or	
not.	In	other	words,	your	audience	is	interested	in	a	proof	that	deduces	
this	feature	that	is	common	to	all	of	the	cases	from	some	other	feature	
that	is	common	to	them	all.	That	is	the	point	in	asking	why	the	theorem	
holds.	

In	asking	why	the	theorem	holds,	the	members	of	your	audience	
are	demanding	the	kind	of	proof	that	books	of	mathematical	“magic”	
standardly	present	as	explaining	why	the	trick	works.	The	following	
explanation	comes	from	Gardner’s	Mathematical Circus	(1979,	101−104,	
167−168).	The	 trick’s	 explanation	 is	 that	 in	 any	 table,	 the	 two	 initial	
numbers	x	and	y	generate	a	“generalized	Fibonacci	sequence”	on	the	
subsequent	rows:	x, y, x +	y, x	+	2y,	2x	+	3y,	….	Gardner	displays	this	
sequence	in	the	following	table:	

1. x

2. 						y

3. x	+	y

4. x	+	2y

5. 2x	+	3y

6. 3x	+	5y

7. 5x	+	8y

8. 8x	+	13y

9. 13x	+	21y

10. 21x	+	34y

total 55x	+	88y

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

total

Then	ask	your	friends	to	complete	the	table	by	inserting	the	sum	of	
those	 two	rows	 in	 row	3,	 the	sum	of	 rows	2	and	3	 in	 row	4,	and	so	
forth	 through	 row	 10		 and,	 finally,	 to	 compute	 the	 grand	 total	 by	
summing	all	of	the	numbers	in	rows	1	through	10.	While	your	friends	
are	furiously	completing	the	table,	you	look	over	their	shoulders	until	
they	fill	 in	 row	7.	Then	you	simply	 take	 that	entry,	multiply	 it	by	 11	
in	your	head,	and	boldly	announce	the	grand	total	 long	before	they	
reach	it.	Here,	for	example,	is	the	completed	table	when	the	two	initial	
numbers	are	4	and	7.

1. 4

2. 7

3. 11

4. 18

5. 29

6. 47

7. 76

8. 123

9. 199

10. 322

total 836
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In	 this	 new	 context,	 a	 proof	 explaining	 why	 the	 theorem	 holds	
has	to	treat	the	result’s	x-	and	y-components	alike,	deducing	each	in	
the	same	way	from	a	feature	they	share.	Such	a	proof	must	show	that	
the	above	 two	equations	concerning	 the	Fibonacci	sequence	are	no	
coincidence		have	a	common	proof.	Gardner’s	original	explanation	
cannot	do	that,	since	it	treats	the	x-sum	separately	from	the	y-sum.	So	
it	does	not	explain	in	the	new	context.	

This	shift	is	visible	in	the	mathematics	literature.	For	instance,	one	
textbook	(Benjamin	and	Quinn	2003,	30–31)	begins	by	presenting	the	
trick	under	the	title	“A	Magic	Trick”,	indicating	the	kind	of	proof	that	
would	be	explanatory	(namely,	one	revealing	it	to	be	no	coincidence	
that	the	trick	succeeds	for	any	x	and	y).	The	book	then	gives	Gardner’s	
proof,	commenting	that	“[t]he	explanation	of	this	trick	involves	noth-
ing	more	than	high	school	algebra”.	However,	once	the	table	decom-
poses	the	result	into	the	x-	and	y-components,	a	previously	unrecog-
nized	feature	of	the	result	becomes	salient.	The	textbook	records	that	
the	given	explanation	cannot	help	raising	“why”	questions	 it	cannot	
answer,	remarking:	“…	the	total	of	Rows	1	through	10	will	sum	to	55x	+	
88y.	As	luck	would	have	it,	(actually	by	the	next	identity),	the	number	
in	Row	7	is	5x	+	8y”	(Benjamin	and	Quinn	2003,	30–31).	The	result’s	
x-	and	y-components	are	the	above	two	equations	regarding	the	first	
eight	and	first	nine	Fibonacci	numbers,	and	 the	proof	depicts	 these	
equations	as	if	their	jointly	holding	were	a	matter	of	“luck,”	having	no	
common	proof:	a	mathematical	coincidence.	But	it	is	no	coincidence	 
as	the	textbook	foreshadowed	by	saying	“actually,	by	the	next	identity”.	

That	“next	identity”	concerns	Fibonacci	numbers.	To	explain	why	
the	 two	 equations	 hold,	 think	 of	 the	 Fibonacci	 sequence	 as	 doubly 
infinite.	With	F1	=	1	and	F2	=	1,	it	follows	that	F0	=	0,	F-1	=	1,	etc.	Note	that	
F-1	and	F0	are	the	x-coefficients	in	lines	1	and	2	of	Gardner’s	table.	So	
the	following	equations	capture	the	x-	and	y-sides,	respectively:	

F-1	+	F0	+	…	+	F8	=	11	F5

F0	+	F1	+	…	+	F9	=	11	F6

As	Gardner’s	table	proves,	the	sum	of	the	first	10	members	in	any	such	
sequence	is	55x	+	88y,	which	is	11	times	the	7th	member	of	the	sequence	
(5x	+	8y).	This	 “common	proof”	covering	all	cases	alike	makes	 it	no	
mathematical	 coincidence	 that	 the	 trick	works	 in	 any	possible	 case.	
The	proof	unifies	all	the	cases	falling	under	the	theorem.	

Now	for	the	shift	in	context.	Looking	at	Gardner’s	table,	we	think	of	
the	x’s	as	forming	one	sequence	and	the	y’s	as	forming	another,	separate	
sequence.	We	recognize	that	the	coefficients	of	the	x	terms	in	lines	3	
through	10	are	the	first	eight	members	of	the	Fibonacci	sequence	and	
the	coefficients	of	the	y	terms	in	lines	2	through	10	are	the	first	nine	
members.	So	Gardner’s	explanation	 reveals	 that	 the	 result’s	holding	
on	the	x-side	consists	of	the	sum	of	the	first	8	Fibonacci	numbers	plus	
1	equaling	11	times	the	fifth	Fibonacci	number	(line	7’s	x-coefficient).	
The	result’s	holding	on	the	y-side	consists	of	the	sum	of	the	first	nine	
Fibonacci	numbers	equaling	11	times	the	sixth	Fibonacci	number	(line	
7’s	y-coefficient).	In	other	words	(where	Fi	is	the	i

th	Fibonacci	number):

F1	+	F2	+	…	+	F8	+	1	=	11	F5

F1	+	F2	+	…	+	F9	=	11	F6

In	 the	 wake	 of	 Gardner’s	 explanation,	 the	 context	 has	 shifted;	 a	
different	 feature	of	 the	 theorem	has	become	salient.	Having	proved	
the	theorem	by	using	the	table	filled	in	with	x’s	and	y’s	so	as	to	give	
a	 common	 proof	 for	 every	 instance	 of	 the	 theorem,	 we	 now	 find	
ourselves	considering	the	original	result	as	having	two	components:	
an	x-result	and	a	y-result.	The	salient	 feature	 is	now	 that	 the	x-sum	
works	 out	 so	 that	 the	 coefficient	 in	 the	 grand	 total	 is	 11	 times	 the	
coefficient	on	the	seventh	line	and	that	the	y-sum	works	out	in	the	very	
same	way.	The	result’s	salient	feature	is	now	that	the	x-	and	y-sums	are	
alike	 in	 this	 respect.	This	 feature	 could	not	originally	 have	been	 the	
result’s	salient	feature,	since	we	could	not	originally	have	decomposed	
the	theorem	into	x-	and	y-results;	we	could	do	that	only	after	having	
Gardner’s	explanation.	
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makers	however	the	context	may	shift.25	This	suggests	that	grounding	
and	explaining	in	mathematics	are	fundamentally	distinct.	
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dum	salient,	we	can	introduce	a	contrast	even	to	some	pedestrian	mathemati-
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or	a	proof	that	treats	the	x-	and	y-sums	alike.	Even	a	proof	that	does	neither	
would	rule	out	the	contrasting	alternative	to	the	trick’s	always	working,	de-
spite	failing	to	explain	(in	any	of	these	contexts)	why	the	trick	works.

25.	 The	ground	of	the	fact	that	the	x-	and	y-sides	of	Gardner’s	table	both	work	out	
may	be	that	for	any	10	consecutive	members	of	the	doubly-infinite	Fibonacci	
sequence,	their	sum	equals	11	times	the	seventh	member	in	the	sum.	In	that	
case,	perhaps	one	of	the	explanations	of	the	mathemagic	trick	supplies	the	
grounds	of	 the	 trick’s	 success.	 (An	account	of	mathematical	 facts’	 grounds	
would	have	to	say	whether	the	regularity	regarding	every	10-member	Fibo-
nacci	sequence	is	grounded	in	facts	about	individual 10-member	sequences.)	
Nevertheless,	 that	 proof	 does	 not	 acquire	 its	 explanatory	 power	 from	 sup-
plying	the	grounds	of	the	trick’s	success		since	in	a	different	context,	the	
ground	remains	but	the	proof	lacks	explanatory	power.

This	pair	is	no	coincidence.	The	two	equations	can	be	given	the	same	
proof		a	proof	that	for	any	10	consecutive	members	of	the	doubly-
infinite	 Fibonacci	 sequence,	 their	 sum	 equals	 11	 times	 the	 seventh	
member	 in	 the	 sum.	 (I	 relegate	 the	boring	proof	 to	 an	endnote.23	 It	
gives	 the	 same	 treatment	 to	 every	 10-term	 segment	 of	 the	 doubly-
infinite	Fibonacci	sequence.)

In	virtue	of	this	common	proof,	it	is	no	coincidence	that	the	x-	and	
y-sides	in	Gardner’s	table	both	make	the	trick	work.	The	trick’s	x-	and	
y-components	both	work	because	of	another	feature	they	share:	Each	
involves	the	sum	of	 ten	consecutive	members	of	 the	doubly-infinite	
Fibonacci	sequence.	So	(on	section	3’s	account)	this	proof	explains	why	
the	trick	works,	when	this	“why”	question	is	asked	in	a	context	where	
the	 trick’s	 salient	 feature	 is	 that	 the	 x-	 and	 y-sides	 have	 something	
in	common.	The	proof	explains	by	 tracing	that	similarity	 to	another	
feature	that	the	two	sides	share.	

This	example	illustrates	how	a	shift	in	context	can	alter	what	it	takes	
for	a	proof	to	be	explanatory.	A	proof’s	explanatory	power	depends	on	
the	salience	of	particular	features	of	the	theorem	being	explained,	and	
their	salience	 is	context-dependent.	By	contrast,	a	 theorem’s	ground	
is	not	context	dependent.24	A	theorem’s	truth-makers	remain	its	truth-

23.	 For	any	integer	n,
	 Fn+1	+	Fn+2	+	Fn+3	+	Fn+4	+	Fn+5	+	Fn+6	+	Fn+7	+	Fn+8	+	Fn+9	+	Fn+10	
	 =	2Fn+3	+	2Fn+4	+	2Fn+5	+	0Fn+6	+	Fn+7	+	2Fn+8	+	2Fn+9	
	 =	4Fn+5	+	3Fn+7	+	4Fn+8	
	 =	4Fn+5	+	4Fn+6	+	7Fn+7	
	 =	11	Fn+7
24.	As	 I	mentioned	 in	 note	 16,	 some	 grounding	 theorists	 (e.g.,	 Schaffer	 2016)	

regard	grounding	as	contrastive:	 the	 fact	 that	G	 rather than G´	grounds	 the	
fact	that	H	rather than H´.	Such	contrastive	grounding	facts	are	not	context-
dependent,	but	the	relevant	contrast	to	H	may	differ	in	different	contexts	and	
remain	implicit.	So	(as	a	referee	has	suggested)	the	fact	that	H	grounds	G	may	
be	context-dependent:	true	for	one	implicit,	context-dependent	contrast	and	
false	for	another.	
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