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1. Introduction

Compared to scientific explanation, with which philosophy of science
has been seriously engaged for at least six decades, explanation in math-
ematics has been little explored by philosophers.! Its neglect is remark-
able. Mathematical proofs that explain why some theorem holds were
distinguished by ancient Greek mathematicians from proofs that merely
establish thatsome theorem holds (Harari 2008), and this distinction has
been invoked in various ways throughout the history of mathematics.?
Fortunately, mathematical explanation has now begun to receive greater
philosophical attention. As Mancosu (2008, 134) remarks, the topic’s
“recent revival in the analytic literature is a welcome addition to the
philosophy of mathematics.”

1. In the literature on explanation, the existence of explanations in mathematics
is often acknowledged; for one example per decade, see Nagel 1961, 16; Rescher 1970, 4;
Sober 1984, 96; Smart 1990, 2; and Psillos 2002, 2. But explanation in mathematics is
typically not examined at length; in the five works just cited, either it is set aside as not
germane to the kind of explanation being examined, or it is given cursory treatment, or it
is just ignored after being acknowledged once. Among the very few earlier papers that
examine explanation in mathematics at some length are Steiner 1978a; Kitcher 1984,
1989; and Resnik and Kushner 1987.

2. “Explaining why the theorem holds” is just explaining the theorem. It is distinct
from explaining why we should (or do) believe the theorem. This distinction is familiar
from scientific explanation.
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One reason that mathematical explanation has received relatively
scant philosophical attention may be the temptation among philoso-
phers to believe that when mathematicians talk about a given proof’s
“explanatory power,” they are merely gesturing toward some aesthetically
attractive quality that the proof possesses—a quality that is very much in
the eye of the beholder (like a proof’s being interesting, understandable,
or witty). However, no such suspicion is seriously entertained with regard
to scientific explanation,® and we should demand some reason why math-
ematical explanation deserves to be regarded differently. Of course, some
aspects of explanation (whether in science or math) may well depend on
the audience. Many philosophers accept that in science, one fact may
explain another only in a given context—that is, only in light of the
audience’s interests, which help to make certain facts salient and certain
styles of argument relevant.* But as Kitcher and Salmon (1987) have
convincingly argued, this interest relativity in scientific explanation
does not mean that “anything goes”—that an explanation in a given
context is just whatever strikes the given audience as explanatory or
whatever facts or arguments would be of interest to them.

A key issue in the philosophical study of scientific explanation is
the source of explanatory asymmetry: why does one fact explain another
rather than vice versa? Some philosophers have argued that explanatory
priority is generally grounded in causal priority: causes explain their
effects, not the reverse.® Likewise, some philosophers have argued that
certain laws of nature are fundamental and therefore explanatorily prior

3. Such suspicions have sometimes been seriously entertained regarding historical
and other social-scientific explanations insofar as a given social scientist purports to
understand another person’s behavior by finding (through the operation of “Verstehen”
or empathetic identification) “that it parallels some personal experience of the inter-
preter” (Abel 1953 [1948], 686). But we might (joining Abel) regard these suspicions as
suggesting instead that genuine explanations in social science do not incorporate such
empathetic identification, but rather are causal.

4. For instance, Van Fraassen (1980, 125) says that a cause of some event counts
as explaining it to a given person by virtue of “being salient to [that] person because of
his orientation, his interests, and various other peculiarities in the way he approaches or
comes to know the problem—contextual factors.” Likewise, Lewis (1986, 226—29) says
that a causal explanation supplies enough of the sort of information that the recipient
wants regarding the explanandum’s causal history.

5. For example: “Here is my main thesis: to explain an event is to provide some infor-
mation about its causal history” (Lewis 1986, 217); “The explanation of an event describes
the ‘causal structure’ in which it is embedded” (Sober 1984, 96).
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to other, “derivative” laws.® By contrast, in mathematical explanations
consisting of proofs, the source of explanatory priority cannot be causal
or nomological (or temporal) priority. Rather, at least part of its source
would seem to be that axioms explain theorems, notvice versa. Of course,
there may be several different ways to axiomatize a given branch of
mathematics. Perhaps only some of these axiomatizations are correct
for explanatory purposes. Or perhaps any axiomatization is equally good
for explanatory purposes, buta proof’s status as explanatoryis relative to a
given axiomatization.”

I'will be concerned with a logically prior issue. By means of several
examples, I will argue that two mathematical proofs may prove the same
theorem from the same axioms, though only one of these proofs is
explanatory. My goal in this essay will be to identify the ground of this
distinction. Accordingly, my focus will be on the course that a given proof
takes between its premises and its conclusion. The distinction between
explanatory and nonexplanatory proofs from the same premises must
rest on differences in the way they extract the theorem from the axioms.

Furthermore, for a theorem of the form “All Fs are G,” we will
see that the distinction between explanatory and nonexplanatory proofs
rests on differences in the ways in which the proofs manage to extract the
property of being G from the property of being F. But two proofs of the
same theorem that differ in this way are nevertheless alike in a respect
distinct from their both proceeding from the same axioms, namely,
in their both proving the theorem by extracting G-hood from F-hood
(and, in this sense, by treating the theorem as “All Fs are G” rather than,
for example, as “All non-Gs are non-F”). As we will see, a proof’s explan-
atory power depends on the theorem’s being understood in terms of

6. See, for example, Mill 1872, 364-69, Salmon 1989, 14-19.

7. Here, perhaps, is one way in which a proof under two axiomatizations could
be explanatory under one axiomatization but not under the other. Desargues’s theorem
cannot be proved from the other axioms of plane (that is, two-dimensional) projective
geometry. If we add as an additional axiom that the two-dimensional projective space can
be embedded in a space of three (or more) dimensions, then Desargues’s theorem can be
given a proof that is regarded as explanatory (by, for instance, Stankova [2004, 175], who
contrasts it with a proof that “doesn’t give us a clue really why Desargues’ Theorem works”).
However, we could instead simply add Desargues’s theorem directly as a further axiom of
projective geometry, as is often done—for example, by Stillwell (2005, 117) and Gray
(2007, 347). Having done so, we can derive three-dimensional embeddability and from
that conclusion, in turn, we can reverse course by using the above proof to deduce Desar-
gues’s theorem. But then this proof does not explain why Desargues’s theorem holds,
since Desargues’s theorem is an axiom. For more, see Lange, n.d.
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Figure 1. A calculator keyboard

a “setup” or “problem” (involving F’s instantiation) and a “result” or
“answer” (G’s instantiation). In addition, we will see that the manner in
which a theorem is expressed not only involves a “setup” and “result,” but
also may call attention to a particular feature of the theorem, where that
feature’s salience helps to determine what a proof must do in order to
explain why the theorem holds.

To get started, let’s look briefly at an example of an explanation
in mathematics (to which I will return in section 6). Take an ordinary
calculator keyboard (fig. 1):

We can form a six-digit number by taking the three digits on any
row, column, or main diagonal on the keyboard in forward and then
in reverse order. For instance, the bottom row taken from left to right,
and then right to left, yields 123321. There are sixteen such “calculator
numbers” (321123, 741147, 951159, ...). As you can easily verify (with a
calculator!), every calculator number is divisible by 37. But a proof that
checks each of the calculator numbers separately does not explain why
every calculator number is divisible by 37. Compare this case-by-case
proof to the following proof:

The three digits from which a calculator number is formed are three
integers a, a+ d, and a + 2din arithmetic progression. Take any number
formed from three such integers in the manner of a calculator number—
that is, any number of the form 10%a+ 10*(a+ d) + 10%(a+ 2d) +
10%(a+2d) +10(a+ d) + a. Regrouping, we find this equal to
a(10°+ 10" +10° +10° + 10 + 1) + d (10" +2.10° 4+ 2.10* + 10) =
111111a+ 12210d = 1221(91a+ 10d) = (3 X 11 X 87) (91a+ 10d).®

This proof explains why all of the calculator numbers are divisible by 37;
as a mathematician says, this proof (unlike the case-by-case proof) reveals
the result to be “no coincidence” (Nummela 1987, 147; see also Lange

8. The example appears in an unsigned “gleaning” on page 283 of the December
1986 issue of the Mathematical Gazette. Roy Sorensen (n.d.) called this lovely example to
my attention. He also cited Nummela 1987, from which this explanatory proof comes.
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2010). Later I will propose an account of what makes this proof but not
the case-by-case proof explanatory.

In section 2, I will present another example in which two proofs
of the same theorem differ (according to a mathematician) in explana-
tory power. In section 3, I'will try to spell out the difference between these
proofs that is responsible for their difference in explanatory power.
Roughly speaking, I will suggest that one proof is explanatory because
it exploits a symmetry in the problem—a symmetry of the same kind as
the symmetry that initially struck us in the result being explained. In
sections 4 and b5, I will present several other, diverse examples where
different proofs of the same theorem have been recognized as differing
in explanatory power. In each example, I will suggest that this difference
arises from a difference in whether the proofs exploit a symmetry in the
problem that is like a striking symmetry in the theorem being proved.
These cases will also illustrate how “brute force” proofs fail to explain
and why some auxiliary constructions but not others are “artificial.” In
section 6, I will generalize my proposal to explanations that do not exploit
symmetries. I will argue that in many cases, at least, what it means to ask
for a proof that explains is to ask for a proof that exploits a certain kind of
feature in the problem: the same kind of feature thatis outstanding in the
result being explained. The distinction between proofs explaining
why some theorem holds and proofs merely establishing that the theorem
holds arises only when some feature of the result is salient. In section 7,
I'will briefly contrast my account of mathematical explanation with those
of Steiner (1978a), Kitcher (1984, 1989), and Resnik and Kushner
(1987). Finally, in section 8, I will suggest that some scientific explana-
tions operate in the same way as the mathematical explanations I have
examined.

Although my concern will be the distinction between explanatory
and nonexplanatory proofs in mathematics, I will not contend that all
mathematical explanations consist of proofs. Indeed, I will give some
examples of mathematical explanations that are not proofs.?

9. Of course, mathematical facts are often used to explain why certain contingent
facts hold. Sometimes mathematical facts may even play the central role in explaining
some physical fact. For recent discussions, see Baker 2005 and Lange 2013; see also Steiner
1978b. But these are not “mathematical explanations” of the kind thatI will be discussing,
which have mathematical theorems rather than physical facts as their target.

In a conversation, we might “explain” why (or how) some mathematical proof
works (by, for example, making more explicit the transitions between steps). A textbook
might “explain” how to multiply matrices. A mathematics popularizer might “explain” an
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I will be paying close attention to particular examples of explan-
atory and nonexplanatory proofs. Proposed accounts of scientific expla-
nation have long been tested against certain canonical examples. Various
arguments from the history of science are paradigmatically explanatory,
such as Darwin’s explanations of various facts of biogeography and
comparative anatomy, Wegener’s explanation of the correspondence
between the South American and African coastlines, and Einstein’s expla-
nation of the equality of inertial and gravitational mass. Any promising
comprehensive theory of scientific explanation must deem these argu-
ments to be explanatory (as far as we now know). By the same token, there
is widespread agreement that various other arguments are not explana-
tory—examples so standard thatI need only give their familiar monikers,

” ”

such as “the flagpole,” “the eclipse,” “the barometer,” and “the hexed
salt” (Salmon 1989, 46-50). Although there are some controversial
cases (such as “explanations” of the dormitive-virtue variety), philoso-
phers who defend rival accounts of scientific explanation largely agree
on the phenomena that they are trying to save.

Alas, the same cannot be said when it comes to mathematical
explanation. The philosophical literature contains few, if any, canonical
examples of mathematical explanation drawn from mathematical prac-
tice (or of mathematical proofs that are canonically nonexplanatory).
Accordingly, I think it worthwhile to try to supply some promising candi-
dates—especially examples where the mathematics is relatively simple
and the explanatory power (or impotence) of the proofs is easily appreci-
ated. I will be particularly interested in examples that mathematicians
themselves have characterized as explanatory (or not). In this way, I will
be joining others—such as Hafner and Mancosu (2005) and Tappenden
(2005) —who have recently offered examples to show that explanation

is an important element of mathematical practice.10

obscure theorem by unpacking it. However, none of these is the kind of “mathematical
explanation” with which I will be concerned. None involves explaining why some result
holds—justas Hempel (2001 [1963], 80) pointed out thatan account of scientific explan-
ation does not aim to account for what I do when I use gestures to “explain” to a Yugoslav
garage mechanic how my car has been misbehaving. I am also not concerned with his-
torical or psychological explanations of why mathematicians held various beliefs or how a
given mathematician managed to make a certain discovery.

10. To avoid the corrupting influence of philosophical intuitions, I have also tried to
use examples from workaday mathematics rather than from logic, set theory, and other
parts of mathematics that have important philosophical connections. But by focusing on
proofs that mathematicians themselves recognize as explanatory, I do not mean to suggest
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As we will see, mathematicians have often distinguished proofs
that explain why some theorem holds from proofs that merely establish
that it holds. For instance, in the Port-Royal Logic of 1662, Pierre Nicole
and Antoine Arnauld characterized indirect proof (that is, proof of p by
showing that ~p implies a contradiction) as “useful” but nonexplanatory:
“Such Demonstrations constrain us indeed to give our Consent, but no
way clear our Understandings, which ought to be the principal End of
Sciences: for our Understanding is not satisfied if it does not know not
only that a thing is, but why it is? which cannot be obtain’d by a Demon-
stration reducing to Impossibility” (Nicole and Arnauld 1717, 422 [part4,
chapter 9]). Nicole and Arnauld evidently took explanation to be as
important in mathematics as it is in science. More recently, the mathe-
matician William Byers (2007, 337) has characterized a “good” proof as
“one that brings out clearly the reason why the result is valid.” Likewise,
researchers on mathematics education have recently argued empirically
that students who have proved and are convinced of a mathematical
result often still want to know why the resultis true (Mudaly and de Villiers
2000), that students assess alternative proofs for their “explanatory
power” (Healy and Hoyles 2000, 399), and that students expect a
“good” proof “to convey an insight into why the proposition is true”
even though explanatory power “does not affect the validity of a proof”
(Bell 1976, 24). However, none of this work investigates what it is that
makes certain proofs but not others explanatory. This question will be
my focus.

that philosophers must unquestioningly accept the verdicts of mathematicians. Indeed,
some mathematicians, such as Gale (1990), have denied that there is any distinction
between explanatory and nonexplanatory proofs. (Some philosophers have agreed;
see, for example, Grosholz 2000, 81. However, Gale [1991, 41] later changed his
mind.) But just as an account of scientific explanation should do justice to scientific
practice (without having to fit every judgment of explanatory power made by every sci-
entist), so an account of mathematical explanation should do justice to mathematical
practice. Regarding the examples that I will discuss, I have found the judgments made by
working mathematicians of which proofs do (and do not) explain to be widely shared and
also to be easily appreciated by nonmathematicians. It is especially important that an
account of mathematical explanation fit such cases.
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2. Zeitz’s Biased Coin: A Suggestive Example of Mathematical
Explanation

Consider this problem:11

A number p between 0 and 1 is generated randomly so that there is an
equal chance of the generated number’s falling within any two intervals of
the same size inside [0,1]. Next a biased coin is built so that pis its chance
of landing heads. The coin is then flipped 2000 times. What is the chance
of getting exactly 1000 heads?

How do the chances of getting various total numbers of heads, for a given
bias p, combine with the chances of the coin’s bias p being extreme or
closer to fair so as to yield the overall chance of getting exactly 1000
heads? The mathematician Paul Zeitz gives the answer: “The amazing
answer is that the probability is 1/2001. Indeed, it doesn’t matter how
many heads we wish to see—for any [integer r] between 0 and 2000, the
probability that rheads occur is 1/2001” (Zeitz 2000, 2). That is, each of
the 2001 possible outcomes (from 0 heads to 2000 heads) has the same
probability. Thatis remarkable. It prompts us to ask, “Why s that?” (There
is nothing special about 2000 tosses; the analogous result holds for any
number 7 of tosses.)

Here is an elaboration of one proof that Zeitz sketches. (I give all
of the gory details, but you may safely skim over them, if you wish.)

If you flip a coin n times, where p is the chance of getting a head on any
single flip, then the chance of getting a particular sequence of r heads

and (n— 1) tails is p"(1 — p)""". Now let’s consider all of the sequences
n

n!

with exactly r heads. There are = o different ways of arranging
. Tn=)!

r heads and (n— 1) tails. So the chance of getting exactly r heads is
n
( >p’(l — p)"". This is the chance for a given value p of the coin’s
r
bias. But the coin’s bias can assume any value from 0 to 1, so to arrive at
the total chance of getting exactly rheads, we must take into account the
chance of getting exactly r heads for each possible value of the coin’s bias.
The total chance of getting exactly r heads is the sum, taken over all
possible biases p for the coin (ranging from 0 to 1), of the chance of
getting r heads if the coin’s bias is p, multiplied by the chance dp that p

11. From the Bay Area Math Meet, San Francisco, April 29, 2000.
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is the coin’s bias. This sum is an integral:
1/ n ) n 1
o\7” r 0

The easiest way to tackle this integral is to use the textbook technique
of “integration by parts,” according to which [wudv= uv— [vdu. To
apply this formula, we express [p"(1 — p)" "dp in the form [wudv by
letting v = (1 — )" " and dv = p"dp. It follows by routine differentiation
of u that du = —(n—7r)(1 — p)"ﬂ*ldj) and from routine antidifferentia-
tion of dvthat v = [:Jr—l Plugging all of this into the formula for integration
by parts, we find

1
n—r

nirprJrl
) o rt+1

1
r+1 _ n—r—1

1
Lp’(l — Py =(1—p

The first term on the right side equals zero at both p= 0 and p=1,
so that term disappears. We can leave behind to be gathered later the
77 preceding the integral in the second term on the rightside.

As for thatintegral, it takes the same form as the integral on the left side—

coefficient

merely with the first exponent increased by 1 and the second exponent
decreased by 1. So we can in the same way apply integration by parts to
this integral, yielding the same increase and decrease (respectively) by 1
in the two exponents:

1 —r—1 1 . .
J0p1"+1(1 _ p)n*rfldp — %JOI)PFZ(I _ p)n*rfzdp_

Again leaving behind the coefficien ”;’_;1 on the right side to be

gathered later, we can repeatedly integrate by parts until (1 — p)’s expo-

nent eventually decreases to 0. The remaining integral is much simpler to
solve than its predecessors:

! 1

n+1"

1 pn+l

1
n _ 0 — n —
Lp (1 - p)dp Lp b=l

Having finally gotten rid of all of the integrals, we can go back and
gather the various coefficients we left behind that were produced by each

493

Published by Duke University Press



Philosophical Review

MARC LANGE

of the integrations by parts:

! r n—r _(n—7 n—r—1 1 1
Lp (I=p)"dp= (,H) (W)(ﬁ) ("+1)

= D=2 (T DD
ntl = n—r—1) . (2) n+1 n

n

Thisresult times ( > — the coefficient of the firstintegral we tackled
r

by parts—is the total chance of getting exactly r heads in our problem.
n n

But ( ) = ( ) since the number of different arrangements
n—r r

of exactly n— 7 tails in n coin tosses equals the number of different

arrangements of exactly r heads in n tosses. So the total chance of

getting exactly r heads in our problem (with n=2000) is

n
( , > (ﬁ) + = (ﬁ) —the result we sought.

(-0 )

Although this proof succeeds, Zeitz (2000, 2—4) says that it “shed[s] no

real light on why the answer is what itis. ... [It] magically produced the

value (#1 ).” Although Zeitz does not spell out this reaction any further, I

think we can readily sympathize with it. This proof makes it seem like

an accident of algebra, as it were, that everything cancels out so nicely,

1
n+1°

Of course, nothing in math is genuinely accidental; the result is

leaving us with just

mathematically necessary. Nevertheless, until the very end, nothing in the
proofsuggested that every possible outcome (fora given n) would receive
the same chance.!? The result simply turns out to be independent of 7
and this fact remains at least as remarkable after we have seen the

12. Regarding another method of tackling this integral (using generating func-
tions), Zeitz (2007, 352) says, “The above proof was a thing of beauty. ... Yet the magical
nature of the argument is also its shortcoming. Its punchline creeps up without warning.
Very entertaining, and very instructive in a general sense, but it doesn’t shed quite enough
light on this particular problem. It shows us how these n + 1 probabilities were uniformly
distributed. But we still don’t know why.”

The proof I gave can be shortened: by integration by parts, as we saw, the total

n n
chance of r heads in n tosses is Jop Q= p)ydp = :’Jr;{ﬂ)p A —py!
n r r
dp = < 41 >f(1)p ™1(1 — p)" " 1dp, which is the total chance of r+ 1 heads in 7 tosses.
r
1

In this way, we show that the chance is independent of r and so must be .-5. However
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above proof as it was before. I think that many of us would be inclined to
suspect that there is some reason why the chance is the same for every
possible outcome (given n)—a reason that eludes the above proof.
(Notice how natural it becomes in this context to talk of “reasons why”
the result holds.)

Zeitz (2000, 5) says that in contrast to the foregoing argument,
the following argument allows us to “understand why the coin problem
had the answer that it did” (his emphasis):

Think of the outcomes of the n coin tosses as dictated by n further num-
bers generated by the same random-number generator that generated
the coin’s chance p of landing heads: a number less than p corresponds
to ahead, and a number greater than p corresponds to a tail. (The chance
that the number will be less than p is obviously p—the chance of a head.)
Thus, the same generator generates n + 1 numbers in total. The out-
comes are all heads if the first number generated (p) is larger than
each of the n subsequent numbers, all but one of the outcomes are
heads if the first number generated is larger than all but one of the n
subsequent numbers, and so forth. Now for the key point: if we were to
rank the n + 1 generated numbers from smallest to largest, then the first
generated number ( p) has the same chance of being ranked first as it has
of being ranked second, and likewise for any other position.

(In the same way, suppose that we were going to flip a fair coin 100
times and then combine the first ten flips into one group, the second ten
into another group, and so forth. Suppose that we were then going to rank
the ten groups in order from the one having the most heads to the one
having the fewest heads. [The order among groups having the same num-
ber of heads is decided randomly.] Then the group consisting of flips 1
through 10 stands the same chance of being ranked first on the list as it
does of being ranked second as it does of being ranked third.... The
group of flips 1 through 10 is not special; it is no more likely to be first
than, say, eighth on the list. The same applies to the first generated
number () among the n+ 1 numbers generated in our example.)

For kin {0, 1, 2,..., n}, let A, be the set of sequences of n coin-toss
outcomes with exactly kheads, and let B, be the set of sequences of n + 1
randomly chosen members of [0,1] in which exactly £ members of the
sequence are less than the first member. The probability that flipping the
coin will produce some or another sequence in A;, equals the probability
that a sequence of n + 1 randomly chosen members of [0,1] will be in By,

(as Tord Sjodin noted when he showed me this shortcut), that things suddenly work out
here so neatly is no less “magical” than in the longer proof.
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and the latter is the probability that the first chosen member (p) is
ranked (k+ 1)st when the n+ 1 members of the sequence are ranked
from smallest to largest.
Hence, every possibility (from 0 heads to n heads) is equally likely, so
1

each has chance 7.

In light of this proof, Zeitz (2000, 5) concludes that the result “is not
unexpected, magical algebra. It is just simple, almost inevitable sym-
metry.” I agree: this proof explains why every possible outcome has the
same chance (and, therefore, why each possible outcome’s chance is n%rl) .
The proof explains this symmetry in the chances (namely, that each poss-
ible outcome has the same chance) by showing how it arises not from an
algebraic miracle, but rather from a symmetry in the setup, namely, that
when the n+ 1 generated numbers (from the same random-number
generator) are listed from smallest to largest, each possible position on
the list is equally likely to be occupied by the first number that was
generated.!® A symmetry in the setup accounts for the same symmetry
in the chances of the possible outcomes.

In short, our curiosity was initially aroused by the symmetry of the
result: that, remarkably, every possible outcome has the same chance. The
first proof did not satisfy us because it failed to exploit any such symmetry
in the setup. We suspected that there was a reason for the result—a
hidden “evenness” in the setup thatis responsible for the same “evenness”
in the result. The second proofrevealed the setup’s hidden symmetry and
thereby explained the result.

3. Explanation by Symmetry

The example of Zeitz’s coin suggests the following proposal, for which I
will argue. Often a mathematical result that exhibits symmetry of a certain
kind is explained by a proof showing how it follows from a similar sym-
metry in the problem. Each of these symmetries consists of some sort
of invariance under a given transformation; the same transformation is
involved in both symmetries. For instance, in the example of Zeitz’s coin,
both symmetries involve invariance under a switch from one possible
outcome (such as 1,000 heads and 1,000 tails) to any other (such as

13. Zeitz (2007, 353): “The probabilities were uniform because the numbers [gen-
erated randomly] were uniform, and thus their rankings [that is, the place of the first
generated number among the others, as ranked from smallest to largest] were uniform.
The underlying principle, the ‘why’ that explains this problem, is ... Symmetry.”
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999 headsand 1,001 tails). In such a case, what makes a proof appealing to
an underlying symmetry in the setup count as “explanatory”—in contrast
to other proofs of the same result? Nothing beyond the fact that
the result’s symmetry was what drew our attention in the first place.

For instance, in the example of Zeitz’s coin, had the result been
some complicated, unremarkable function of » and % then the question
“Why is that the chance?” would probably have amounted to nothing
more than a request for a proof. One proof might have been shorter,
less technical, more pleasing or accessible to some audience, more
elegant in some respect, or more fully spelled out than some other
proof. But any proof would have counted as answering the question.
According to the view that I will ultimately defend, there would then
have been no distinction between a proof that explains the result and a
proof that merely proves it.

However, the result’s symmetry immediately struck us, and it was
made further salient by the first proof we saw, since in that proof, the
solution’s symmetry emerged “magically” from out of the fog of algebra.
Its origin was now especially puzzling. The symmetry, once having
become salient, prompts the demand for an explanation: a proof that
traces the result back to a similar symmetry in the problem. (There need
not be any such proof; a mathematical fact may have no explanation.)!?
In light of the symmetry’s salience, there is a point in asking for an expla-
nation over and above a proof. In short, a proof that exploits the setup’s
symmetry is privileged as explanatory because the result’s symmetry is
especially striking.

My proposal predicts that mathematical practice contains many
other examples where an explanation of some result is distinguished
from a mere proof of it only in view of the result’s exhibiting a puzzling
symmetry—and where only a proof exploiting such a symmetry in the
problem is recognized as explaining why the solution holds. I will now
present several examples of this phenomenon.

4. ATheorem Explained by a Symmetry in the Unit Imaginary Number
Consider this theorem (first proved by d’Alembert in 1746):

14. For example, after asking why a given Taylor series fails to converge, Spivak (1980,
482) says, “Asking this sort of question is always dangerous, since we may have to settle for
an unsympathetic answer: it happens because it happens—that’s the way things are!”

497

Published by Duke University Press



Philosophical Review

MARC LANGE

If the complex number z = a + bi (where aand bare real) is a solution to
2"+ ap_12" '+ ... + ap = 0 (where the g, are real), then z’s “complex
conjugate” Z = a — bi is also a solution.

Why is that?
We can prove this theorem directly by evaluating 2" + a,-1z""!
+... + agp.

First, we show by calculation that z@ = zw:

Let z=a+ bi and w= ¢+ di. Then zw = (a— bi)(¢c — di) = ac — bd +
i(—bc — ad)and zw = (a + bi)(¢ + di) = ac — bd + i (bc + ad) sozw =

ac — bd — i(bc + ad) = zZw.

Hence, 22 =72z7=% = Z_Q, and likewise for all other powers. Therefore,
Nt a2 4 ot ag=2"4 ap12"  + ... + ap.

Now we show by calculation that z+ @ = z + w:

Letz=a+biand w=c+ di. Then z+ w=(a— b))+ (c—di)=a+ ¢
+i(—b—d)and z+w=a+bi+c+di=a+c—i(b+d)=z2+ w.
Thus, 27 + ap—12" '+ ... +ap =2" + ay—12" ' +... + ap, which equals
0 and hence 0 if zis a solution to the original equation.

Although this proof shows d’Alembert’s theorem to be true,
it pursues what mathematicians call a “brute force” approach. That is,
it simply calculates everything directly, plugging in everything we know
and grinding out the result. The striking feature of d’Alembert’s theorem
is that the equation’s nonreal solutions all come in pairs where one mem-
ber of the pair can be transformed into the other by the replacement of
¢ with —2. Why does exchanging ¢ for —¢in a solution still leave us with
a solution? This symmetry just works out that way (“magically”) in the
above proof. Butwe are inclined to suspect that there is some reason for it.
In other words, the symmetry in d’Alembert’s theorem puzzles us, and
in asking for the theorem’s “explanation,” we are seeking a proof of the
theorem from some similar symmetry in the original problem—that
is, a proof that exploits the setup’s invariance under the replacement
of iwith —i.

The sought-after explanation is that —i could play exactly the
same roles in the axioms of complex arithmetic as ¢ plays. Each has exactly
the same definition: each is exhaustively captured as being such that its
square equals —1. There is nothing more to i (and to — i) than that charac-
terization. Of course, i and —iare not equal; each is the negative of the
other. But neither is intrinsically “positive,” for instance, since neither is
greater than (or less than) zero. They are distinct, but they are no differ-
ent in their relations to the real numbers. Whatever the axioms of
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complex arithmetic say about one can also be truly said about the other.
Since the axioms remain true under the replacement of i with —¢, so
must the theorems—for example, any fact about the roots of a poly-
nomial with real coefficients. (The coefficients must be real so that the
transformation of ¢into —ileaves the polynomial unchanged.) The sym-
metry expressed by d’Alembert’s theorem is thus grounded in the same
symmetry in the axioms.

Here we have another example where a proof is privileged as
explanatory because it exploits a symmetry in the problem—a symmetry
of the same kind as initially struck us in the fact being explained. Further-
more, this is a good example with which to combat the impression that
a proof’s being explanatory is no more objective (no less “in the eye of
the beholder”) than a proof’s being understandable, being of interest, or
being sufficiently spelled out. Mathematicians largely agree on whether
or nota proofis aptly characterized as “brute force,” and I suggest that no
“brute force” proofis explanatory. A brute force approach is not selective.
It sets aside no features of the problem as irrelevant. Rather, it just
“ploughs ahead” like a “bulldozer” (Atiyah 1988, 215), plugging every-
thing in and calculating everything out. (The entire polynomial, not
just some piece or feature of it, was used in the first proof above of
d’Alembert’s theorem.) In contrast, an explanation must be selective.
It must pick out a particular feature of the setup and deem it responsible
for (and other features irrelevant to) the result being explained. (Shortly
we will see another example in which a brute-force proof is explanatorily
impotent.) Mathematicians commonly say that a brute-force solution
supplies “little understanding” and fails to show “what’s going on” (as in
Levi 2009, 29-30).

Suppose that we had begun not with d’Alembert’s theorem,
but instead merely with some particular instances of it (as d’Alembert
might have done). The solutions of 22 4+62—20=0are2, —1+ 3i, and
—1 — 3i. The solutions of z? —2z4+2=0 are 1 —i and 1+ i In both
examples, the solutions that are not real numbers are pairs of complex
conjugates. Having found many examples like these, one might ask, “Why
is it that in all of the cases we have examined of polynomials with real
coefficients, their nonreal roots all fall into complex-conjugate pairs? Is it
a coincidence, or are they all like that?” One possible answer to this why
question is that they are not all like that; we have simply gotten lucky by
having examined an unrepresentative group of examples. Another pos-
sible answer is that our examples were unrepresentative in some system-
atic way: all polynomials of a certain kind (for instance, with powers less
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than 4) have their nonreal solutions coming in complex-conjugate pairs,
and all of the polynomials we examined were of that kind. In fact, as we
have seen, d’Alembert’s theorem is the explanation; any polynomial with
exclusively real coefficients has all of its nonreal roots coming in complex-
conjugate pairs. Here we have a mathematical explanation that consists
not of a proof, but merely of a theorem.

However, it is not the case that just any broader mathematical
theorem at all that subsumes the examples to be explained would suffice
to account for them. After all, we could have subsumed those two
cases under this gerrymandered theorem: For any equilateral triangle
or equation that is either z® 4+ 6z —20 = 0 or 2z — 224+ 2 =0 (the two
cases above), either the triangle is equiangular or the equation’s nonreal
solutions all form complex-conjugate pairs. This theorem does not
explain why the two equations have the given feature. (Neither does a
theorem covering just these two cases.) Plausibly, whether a theorem can
be used to explain its instances depends on whether that theorem
has a certain kind of explanation. (I argue for this view in Lange 2010.)
In any case, my concern in this essay is with the way that a certain proof
of some theorem can explain why that theorem holds rather than with
mathematical explanations where a theorem explains why one or more of
its instances hold.

Here is another example (also discussed by Kitcher 1989, 425-26)
of a proof that is widely respected as possessing explanatory power
because it derives a result exhibiting a salient symmetry from a similar
symmetry in the setup. It had been well known before Lagrange that
a cubic equation of the form x*+nx+ p =0, once transformed by
x =y —n/3y, becomes a sixth-degree equation y®+ py® +n®/27 =0
(the “resolvent”) that, miraculously, is quadratic in y*. Lagrange aimed
to determine why: “I gave reasons why [raison pourquoi] this equation,
which is always of a degree greater than that of the given equation, can be
reduced” (Lagrange 1826 [1808], 242). Lagrange showed that exactly the
resolvent’s solutions y can be generated by taking 1/3 (a; + way + w”a3)
and replacing a;, ag, and ag with the cubic’s three solutions x;, Xo, and xg
in every possible order—where v = (=1 + m)/Q, one of the cube roots
of unity. But the three solutions generated by even permutations of x;, X,
and xg—namely, 1/3 (x; + oxy + 0?x3), 1/3 (X9 + wx3 + 0?x;),and 1/3
(x5 + 0x; + 0?xo)—all have the same cubes (since 1 = 0® = (0?)%)—
and likewise for the three solutions generated by odd permutations.
Since y® takes on only two values, y> must satisfy a quadratic equation.
So “this is why the equation that y satisfies proves to be a quadratic in y*”
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(Kline 1972, 602). The symmetry of 1/3 (a; + wag + w?az) under permu-
tations of the three x; explains the symmetry thatinitially strikes us regard-
ing the sixth-degree equation (that three of its six roots are the same,
and the remaining three are, too). As mathematicians commonly remark,
y3 “assumes two values under the six permutations of the [x;]. It is for
this reason that the equation of degree six which [y] satisfies is in fact a
quadratic in [y] %" (Kiernan 1971, 51).

5. Two Geometric Explanations That Exploit Symmetry

Proofs in geometry can also explain by exploiting symmetries. Consider
the theorem: If ABCD is an isosceles trapezoid as shown in figure 2 (AB
parallel to CD, AD = BC) such that AM = BK and ND = LC, then
ML = KN.

A proof could proceed by brute-force coordinate geometry: first
let D’s coordinates be (0,0), C’s be (0,c), A’sbe (a,s), and B’s be (b,s), and
then solve algebraically for the two distances ML and KN, showing that
they are equal. A more inventive, Euclid-style option would be to draw
some auxiliary lines (fig. 3) and to exploit the properties of triangles:

Draw the line from N perpendicular to CD; call their intersection P (see
fig. 3); likewise draw line LS. Consider triangles DNP and CLS: angles
D and C are congruent (since the trapezoid is isosceles), ND = LC
(given), and the two right angles are congruent. Hence, by having two
angles and the nonincluded side congruent, ADNP = ACLS, so their cor-
responding sides NP and LS are congruent. They are also parallel (being

D

Figure 2.  An isosceles trapezoid
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D C
P S

Figure 3. A Euclid-style proof

perpendicular to the same line). That these two opposite sides are both
congruent and parallel shows PNLS to be a parallelogram. Hence, NL is
parallel to DC. By the same argument with two new auxiliary lines, AB is
parallel to MK. Therefore, MK and NL are parallel (since they are parallel
to lines that are parallel to each other), so MKLN is a trapezoid. Since
MN = AD-AM —ND, KL = BC-BK—-LC, AM = BK, AD = BC,
and ND = LG, it follows that MN = KL. As corresponding angles,
%X KLN = % LCS;since ACLS = ADNP, X LCS = X NDP; as corresponding
angles, XNDP = X MNL. Therefore, XKLN = XMNL. From this last
(and that NL = NL, MN = KL), it follows (by having two sides and
their included angle congruent) that AMNL = AKLN, and so their cor-
responding sides ML and KN are the same length.

This proof succeeds, but only by using a construction that many
mathematicians would regard as artificial or “clever.” (See, for instance,
Vinner and Kopelman 1998, from whom I have taken this example.) The
construction is artificial because the proof using it seems forced to go to
elaborate lengths—all because it fails to exploit the feature of the figure
that most forcibly strikes us: its symmetry with respect to the line between
the midpoints of the bases (fig. 4).

The theorem (that ML = KN) “makes sense” in view of the
figure’s overall symmetry. Intuitively, a proof that fails to proceed from
the figure’s symmetry strikes us as failing to focus on “whatis really going
on”: that we have here the same figure twice, once on each side of the line
of symmetry. Folding the figure along the line of symmetry, we find that
NO coincides with LO and that MO coincides with KO, so that MO +
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D

Figure 4. A proof by symmetry

OL = KO + ON, and hence ML = KN. Of course, to make this proof
complete, we must first show that the point at which ML intersects KN
lies on the line of symmetry. But thatis also required by the figure’s overall
symmetry: if they intersect off of the line of symmetry, then the setup will
be symmetrical only if there is another point of intersection at the mirror-
image location on the other side of the line of symmetry, but two lines
(ML and KN) cannot intersect at more than one point.

Of course, this proof exploits a very simple symmetry: mirror
reflection across a line. A proof in geometry can explain by virtue of
exploiting a more intricate symmetry in the setup. For instance, consider
one direction of Menelaus’s theorem: If the three sides of triangle ABC
are intersected by a line /; (fig. 5), where C’ (A’,B’) is the point where [;
intersects line AB (BC, CA), then

AC'BA' CB'
BC' CA' AB'

Figure 5. Menelaus’s theorem
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We are immediately struck by the symmetry on the left side of this
equation. (Indeed, we inevitably use the symmetry to get a grip on what
the left side is all about.) The left side consists of a framework of primed
points Eg, Eg,gg, exhibiting an obvious symmetry: “A,” “B,” and “C” all
play the same role around the primes (modulo the order from left to
right, which makes no difference to the product of the three terms).
Within this framework, the three unprimed points are arranged so that
“A,” “B,” and “C” all again play the same role: each appears once on the
top and once on the bottom, and each is paired once with each of the
other two letters primed. These constraints suffice to fix the expression
modulo the leftright order, which does not matter to their product, and
modulo the inversion of top and bottom, which does not matter since

the equation sets the top and bottom equal. In short, the left-hand
expression is invariant (modulo features irrelevant to the equation)
under any systematic interchange of “A,” “B,” and “C” around the other
symbols. In the literature, the primed points are almost always named as I
have named them here (for instance, with C’ as the point where /; inter-
sects line AB) in order to better display the expression’s symmetry.

Having recognized this symmetry in the theorem, we regard any
proof of the theorem that ignores the symmetry as failing to explain why
the theorem holds. For instance, consider this proof:

Draw the line through A parallel to /; (the dotted line in fig. 5); let X
be its point of intersection with line BC. As corresponding angles,
%BA'C’ = X BXA. Therefore (since they also share X B), ABC’A’ is simi-
lar to ABAX, so their correspondmg lengths are in a constant proportion.
In particular, 46 =X Likewise, as corresponding angles, 5CB’A’
= X CAX. Therefore (since they also share XB’CA’), AACX is similar
to AB’CA’, so their corresponding lengths are in a constant proportion.

In particular, {—g,= ‘(Xﬁ, Solving this for XA’ = (AB’)(CA’)/CB’ and

substltutlng the resulting expression for XA’ into the earlier equation

yields 4% 6T = 2—52‘:—;:. The theorem follows by algebra.

Einstein (Luchins and Luchins 1990, 38) says that this proof is “not satis-
fying” and Bogomolny (n.d.) agrees. Both cite the fact that (in Einstein’s
words) “the proof favors, for no reason, the vertex A [since the auxiliary
line is drawn from that vertex], although the proposition [to be proved] is
symmetrical in relation to A, B, and C.” The point here is that although
the proof could have been carried out with an auxiliary line parallel to /;
drawn through vertex B or C rather than through A, the choice of any
one vertex through which to draw the line breaks the symmetry between

504

Published by Duke University Press



Philosophical Review

Aspects of Mathematical Explanation: Symmetry, Unity, and Salience

Figure 6. Another proof of Menelaus’s theorem

A, B, and C in what had been an entirely symmetric armngement.15

That symmetry is then restored in the resulting equation. Consequently,
this proof depicts the symmetric result as arising “magically,” whereas
to explain why the theorem holds, we must proceed entirely from the
figure’s symmetries over A-B-C.

Following Brunhes (1991 [1920], 84), Bogomolny (n.d.) offers
such a proof, which I now elaborate (fig. 6):

Add a line /, perpendicular to /;. Project A onto /s by a line [ from A
parallel to /;;let A, be the point on I to which A is projected. Perform the
same operation on B and C, adding lines /g and I¢, points B, and C,,. Of
course, A’, B/, and C/ all project to the same point on Iy (since [ is their
common line of projection), which can equally well be called “A},”, “B},”,
or “C}”. The following equation exhibits the same symmetry as the
theorem:

4C), B)A, B

B,C!, C,Al, A,B),

This equation is true (considering that A}, Bj,, and C}, are the same point,
allowing a massive cancellation) and is strikingly invariant (modulo fea-
tures irrelevant to the equation: left-right order and inversion of top and

15. The arrangement may seem asymmetric in one respect: vertex A differs from B
and C in being opposite to the only side of AABC that is intersected by {; along its
extension outside the triangle rather than between the triangle’s vertices. However,
the configuration shown in figure 5 is a special case of Menelaus’s theorem since /;
need not intersect any side of AABC between the vertices; [; may intersect all three
sides along their extensions.
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bottom) under systematic interchange of “A,” “B,” and “C” around the
primes and subscript “p”s—the same symmetry that the theorem pos-
sesses. To arrive at the theorem, all we need to do is to find a way to remove
the subscript “p”s from this equation, which is easily done. For any side of
the triangle, /; and the two lines projecting its endpoints onto /s are three
parallel lines, and all three are crossed by the side and by ls. Now for a
lemma: Whenever two transversals cross three parallel lines, the two seg-
ments into which the three parallels cut one transversal stand in the same
ratio as the two segments into which the three parallels cut the other
transversal. That is, the ratio of one transversal’s segments is preserved
in the ratio of their projections onto the other transversal. By projecting
each side onto /o, we find

A,Jc;, _AC B,,A;, _ BA' C,,B;l _ CB'
B,C, BC' C,A,  CA' A,B),  AB'

Thus the theorem is proved by an argument that begins with an equation
that treats A, B, and C identically and in each further step treats them
identically. This proof reveals how features of the setup that are A-B-C
symmetric are responsible for the theorem’s symmetry. The result’s sym-
metry does not just come out of nowhere. Indeed, the proof’s general
strategy is to project A’, B/, and C’ onto the very same point (thereby
treating them identically) by projecting the triangle’s three sides onto the
same line.

This explanation also shows that a proof’s auxiliary lines need not
be “artificial”; that s, the use of auxiliary lines does not suffice to make the
proof nonexplanatory. Although the auxiliary lines in the Euclid-style
proof of the trapezoid theorem were mere devices to get the theorem
proved, and likewise for line AX in the first proof of Menelaus’s theorem,
the scheme of auxiliarylines in the second proof of Menelaus’s theorem is
A-B-C symmetric (Bogomolny, n.d.).

6. Generalizing the Proposal: Mathematical Explanations That Do Not
Exploit Symmetries

I have now given several examples of mathematical explanations consist-
ing of proofs that exploit symmetries. However, I do not mean to suggest
that only a proof that appeals to some symmetry can explain why a math-
ematical theorem holds. Rather, I am using proofs by symmetry to illus-
trate the way in which certain proofs manage to become privileged as
explanatory. Symmetries are not somehow intrinsically explanatory in
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mathematics. Rather, some symmetry in a mathematical result is often
salient to us, and consequently, in those cases, a proof that traces the
result back to a similar symmetry in the problem counts as explaining
why the result holds. Some feature of a mathematical result other than its
symmetry could likewise be salient, prompting a why question answerable
by a proof deriving the result from a similar feature of the given. What
it means to ask for a proof that explains is to ask for a proof that exploits
a certain kind of feature in the setup—the same kind of feature that is
salient in the result. The distinction between proofs that explain why
some theorem holds and proofs that merely establish that it holds exists
only when some feature of the result being proved is salient. That fea-
ture’s salience makes certain proofs explanatory. A proof is accurately
characterized as an explanation (or not) only in a context where some
feature of the result being proved is salient.

My proposal predicts that if the result exhibits no noteworthy fea-
ture, then to demand an explanation of why it holds, not merely a proof
that it holds, makes no sense. There is nothing that its explanation
over and above its proof would amount to until some feature of the result
becomes salient.!®

This prediction is borne out. For example, there is nothing that
it would be for some proof to explain why, not merely to prove that,
ﬁ'(oc3 — bx + 2)dx = 4. Nothing about this equation calls for explanation.

My proposal also predicts that if a result exhibits some noteworthy
feature, but no proof traces that result to a similar feature in the setup,
then the result has no explanation. This prediction is also borne out.
Take the following example of a “mathematical coincidence” given by
the mathematician Timothy Gowers (2007, 34): “Consider the decimal
expansion of ¢, which begins 2.718281828.... It is quite striking that
a pattern of four digits should repeat itself so soon—if you choose a
random sequence of digits, then the chances of such a pattern appearing
would be one in several thousand—and yet this phenomenon is univer-
sally regarded as an amusing coincidence, a fact that does not demand an
explanation” (see also Baker 2009, 140). I take it, then, that mathemati-

16. There may also be cases where the result exhibits a feature that is only slightly
salient. If some proofs but not others exploit a similar feature in the problem, this differ-
ence would ground only a slight distinction between proofs that explain why and proofs
that merely establish that some theorem holds. Another way for intermediate cases to
arise is for a certain feature to be salient in the result, but for proofs to exploit to varying
degrees a similar feature in the setup—rather than for any proof to proceed entirely from
such a feature. See also note 21.
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cians regard this fact as having no explanation. Of course, there are many
ways to derive ¢’s value, and thus to derive that the third-through-sixth
digits of its base-ten representation are repeated in the seventh-through-
tenth digits. For example, we could derive this result from the fact that ¢
equals the sum of (1/n!) forn =0, 1,2, 3.... However, such a proof does
not explain why the seventh-through-tenth digits repeat the third-through-
sixth digits. It merely proves that they do. On my view, that is because the
expression (1/0!) + (1/1!) + (1/2!) + ... from which the proof begins
does not on its face exhibit any feature similar to the repeated sequence
of digits in ¢'s decimal expansion. (None of the familiar expressions
for calculating e makes any particular reference to base 10.) There is, I
suggest, no reason why that pattern of digits repeats. It just does.

Let’s now return to the example from section 1: that every “calcu-
lator number” is divisible by 37. Is this fact a coincidence? (This is the
question asked by the title of the Mathematical Gazette article that contrib-
uted this example to the mathematical literature.)

The striking thing about this result is that it applies to every single
calculator number. In other words, the result’s “unity” is salient. A proof
that simply takes each calculator number in turn, separately showing each
to be divisible by 37, treats the result as if it were a coincidence. That is,
it fails to explain why all of the calculator numbers are divisible by 37.
Indeed, a case-by-case proof merely serves to highlight the fact that the
result applies to every single calculator number. Especially in light of this
proof, an explanation would be a proof that proceeds from a property
common to each of these numbers (where this property is a genuine
respect in which these numbers are similar, that is, a mathematically
“natural” property—unlike the property of being either 123321 or
321123 or...) and that is common to them precisely because they are
calculator numbers.!” I gave such a proofin section 1.1 took it from a later
Mathematical Gazette article (Nummela 1987, 147) entitled “No Coinci-
dence.” That proof exploits the fact that every calculator number

17. Elsewhere (Lange,n.d.),Iam more explicitabout what it takes for amathematical
predicate to denote a mathematically natural property—a genuine respect of similarity.

Strictly speaking, that a given result identifies a property common to every single case
of a certain sort is just a symmetry in the result—for example, that under a switch from
one calculator number to any other, divisibility by 37 is invariant. Accordingly, I have
already argued that a proof that works by exploiting the same sort of symmetry in the
setup counts as explanatory. My view does not require that a theorem’s displaying a
striking symmetry be sharply distinguished from a theorem’s being striking for its treating
various cases alike.
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can be expressed as 10°a+ 10*(a+ d) + 10*(a+ 2d) + 10%(a+ 2d)
+ 10(a+ d) + awhere a, a+ d, a+ 2d are three integers in arithmetic
progression. These three integers, of course, are the three digits on the
calculator keypads that, taken forward and backward, generate the given
calculator number. Hence, this proof traces the fact that every calculator
number is divisible by 37 to a property that they have in common by virtue
of being calculator numbers.

In short, an explanation of this result consists of a proof that treats
every calculator number in the same way.'® This unified treatment makes
the proof explanatory because what strikes us as remarkable about
the result, especially in light of the case-by-case proof, is its unity: that it
identifies a property common to every calculator number. The point of

asking for an explanation is then to ask for a proof that exploits some

other feature common to them because they are calculator numbers.!?

18. Elsewhere (Lange 2010, n.d.), Iam more explicitabout what it takes to treat them
all “in the same way.”

19. If a result is remarkable for identifying something common to each case of an
apparently diverse lot, then those “cases” may themselves be general results—as when
each case is a theorem and the result identifies something common to each of them.
Entirely dissimilar proofs of two theorems would fail to explain why those theorems
involve a common element. On the other hand, proofs of each theorem may explain
this pattern if the proofs themselves exploit a common element. Note the explanatory
language in this remark from a mathematician:

There are lots of ‘meta-patterns’ in mathematics, i.e. collections of seemingly
different problems that have similar answers, or structures that appear more
often than we would have expected. Once one of these meta-patterns isidentified
it is always helpful to understand what is responsible for it.... To give a trivial
example, years ago while the author was writing up his PhD thesis he noticed in
several places the numbers 1, 2, 3, 4 and 6. For instance, cos(277) € Q for r € Q
iff the denominator of r is 1, 2, 3, 4 or 6. Likewise, the theta function O[Z + r] (1)
for r& Q can be written as %, a;03(b; 7) for some a;, b; € R iff the denominator of
ris 1,2,3,4 or 6. This pattern is easy to explain: they are precisely those positive
integers n with Euler totient @(n) = 2, that is there are at most two positive
numbers less than n coprime to n. The various incidences of these numbers
can usually be reduced to this ¢(n) = 2 property. (Gannon 2006, 168)

We can understand the general idea here even if we do not know what Jacobi’s theta
function is or how ¢(n) = 2 is connected to these two theorems. The general idea is that
proofs of the two theorems (one about cos, the other about O[Z + r]) can explain why
{1,2,3,4,6} figures in both if each of those proofs exploits exactly the same feature of
{1,2,3,4,6}—for example, nothing about {1,2,3,4,6} save that this set contains all and
only the positive integers where ¢(n) = 2. (A proof exploits more if, for instance, it
determines which numbers » are such that ¢(n) = 2, and then proceeds case-wise from
there.) Since the striking feature of the two theorems (when presented as Gannon pres-
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A proof does not have to treat each instance separately in order to
fail to treat them all together. Consider this proof by mathematical induc-
tion of the fact that the product of any three consecutive nonzero natural
numbers is divisible by 6:

The product of 1, 2, and 3 is 6, which is divisible by 6.

Suppose that the product of (n— 1), n, and (n + 1) is divisible by 6. Let’s
show that the product of n, (n+1), and (n+ 2) is divisible by 6.
By algebra, that product equals n” + 3n* + 2n = (n® — n) + 3n(n+ 1).
Now (n® —n)=(m—1)n(n+1),s0 by hypothesis, it is divisible by 6. And
n(n+ 1) iseven,so 3n (n + 1) is divisible by 3and by 2, and therefore by 6.
Hence, the original product is the sum of two terms, each divisible by 6.
Hence, that product is divisible by 6.

This prooffails (by awhisker—see note 21) to treat every product of three
consecutive nonzero natural numbers alike. Instead, it divides them into
two classes: the product of 1, 2, and 3; and all of the others. This proof,
then, does not supply a common reason why all of the products of three
consecutive nonzero natural numbers are divisible by 6. Rather, it treats
the first case as a special case. Insofar as we found the theorem remark-
able for identifying a property common to every triple of consecutive
nonzero natural numbers, our point in asking for an explanation was
to ask for a proof that treats all of the triples alike. This feature of the
theorem is made especially salient by a proof that does treat all of the
triples alike:

Of any three consecutive nonzero natural numbers, at least one is even
(that is, divisible by 2) and exactly one is divisible by 3. Therefore, their
product is divisible by 3 X 2 = 6.

This proof proceeds entirely from a property possessed by every triple.20
Like the explanation of the fact that every calculator number is divisible
by 37, this proof traces the result to a property common to every instance

ents them) is that {1,2,3,4,6} figures in both, the point of asking why the two theorems hold
is plainly to ask for proofs of the two theorems where (nontrivially) both proofs exploit
exactly the same feature of {1,2,3,4,6}. That both theorems involve exactly the positive
integers n where ¢(n) = 2 explains why both theorems involve {1,2,3,4,6}, and hence
involve exactly the same integers.

20. Zeitz (2000, 1) mentions this theorem in passing but neither discusses it nor gives
any proof of it. I wonder if he had in mind either of the proofs I discuss.
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and so (when the unity of the result is salient) explains why the result
holds.?!

A proof may focus our attention on a particular feature of the
result that would not otherwise have been salient. The proof may even
call our attention to this feature because the proof conspicuously fails to
exploitit. When this happens, the proof fails to qualify as explanatory. For
instance, take one standard proof of the formula for the sum S of the first
nnonzero natural numbers 1 +2+ ... + (n—1) 4+ n.

There are two cases.

When nis even, we can pair the first and last numbers in the sequence, the
second and second-to-last, and so forth. The members of each pair sum to
n+ 1. No number is left unpaired, since nis even. The number of pairs is
n/2 (which is an integer, since n is even). Hence, S = (n+ 1) n/2.

21. It follows that in a context where the result’s unity is salient, a proof by math-
ematical induction cannot explain the result, since a proof by mathematical induction
always treats the first instance as a special case. However, the inductive proof of the triplet
theorem is a far cry from the proof of the calculator-number theorem that treats each
of the sixteen calculator numbers separately. The inductive proof nearly treats every triple
alike. It gives special treatment only to the base case; all of the others receive the same
treatment. Therefore, although this inductive proof is not an explanation (when
the result’s unity is salient), it falls somewhere befween an explanation and a proof utterly
lacking in explanatory power. (Explanatory power is a matter of degree; it is not all or
nothing.) A result (displaying unity as its striking feature) having such a proof by induc-
tion, but (unlike the triplet theorem) having no proof that treats every case alike, has no
fully qualified explanation but is not an utter mathematical coincidence either, since the
inductive proof ties all but one of its cases together. On my account, the triplet theorem’s
inductive proof is inferior in explanatory power to the fully unifying proof, but neverthe-
less retains some measure of explanatory significance.

In a proof by course-of-values induction (a.k.a. “strong induction,” “complete induc-
tion”), there is no base case. Such an argument uses this rule of inference:

For any property P,

iffor any natural number k, if P(1) and ... and P(k — 1), then P(k),

then for any natural number n, P(n).

Since there is no base case, it might appear that a course-of-values induction explains (in a
context where the result’s unity is salient), by my lights, since it does not give special
treatment to a base case. However, even though a course-of-values induction contains only
the “inductive step,” typically (as when the triplet theorem is proved in this way) it must
prove the inductive step by treating k = 1 as a special case, since the antecedent “if P(1)
and...and P(k—1)” is empty for k = 1. So although any result provable by ordinary
induction can be proved by course-of-values induction, the latter has no automatic explan-
atory advantage over the former.
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When nis odd, we can pair the numbers as before, except that the middle
number in the sequence is left unpaired. Again, the members of each pair
sum to n + 1. But now there are (n — 1) /2 pairs, since the middle number
(n+1)/2 is unpaired. The total sum is the sum of the paired numbers
plus the middle number: S= (n+1)(n—1)/2 4+ (n+ 1) /2. This simpli-
fies to (n+ 1)n/2—remarkably, the same as the expression we just
derived for even n.

Before having seen this proof, we would not have found it remarkable
that the theorem finds that the same formula applies to both even n and
odd n. However, this feature of the result strikes us forcibly in light of this
proof. We might then well wonder: is it a coincidence that the same
formula emerges in both cases? This proof depicts it as an algebraic mir-
acle. Accordingly, in this context, to ask for the reason why the formula
holds, not merely a proof that it holds, is to ask for the feature (if any)
common to both of these cases from which the common result follows.

Indeed there is such afeature; the resultis no coincidence. Wheth-
er nis even or odd, the sequence’s midpoint is half of the sum of the first
and last numbers: (1 + n)/2. Furthermore, all sequences of both kinds
consist of numbers balanced evenly about that midpoint. In other words,
for every number in the sequence exceeding the midpoint by some
amount, the sequence contains a number less than the midpoint by the
same amount. Allowing the excesses to cancel the deficiencies, we have
each sequence containing » numbers of (1 + n)/2 each, yielding our
formula. This is essentially what happens in the standard proof of the
formula, where each member in the sequence having an excess is paired
with a member having an equal deficiency:

S=1424+...+(n—1)+n
S=n+n—-1)+...+2+1

If we pair the first terms, the second terms, and so forth, in each sum, then
each pair adds to (z+ 1), and there are n pairs. So 25= n(n+ 1), and
hence S=n(n+1)/2.

This proof is just slightly different from the proof that deals separately
with even 7 and odd n. The use of two sequences could be considered
nothing but a trick for collapsing the two cases. Yet it is more than that.
It brings out something that the earlier proof obscures: that the common
result arises from a common feature of the two cases. For this reason, the
earlier proof fails to reveal that the formula’s success for both even nand
odd nis no coincidence. What allows the second proof to show that this is
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no coincidence? It traces the result to a property common to the two
cases: that the terms are balanced around (1 + n)/2. (Whether or not
a term in the sequence actually occupies that midpoint is irrelevant to
this balancing.) The earlier proof does not exploit this common feature.
Rather, it simply works its way through the two cases and magically finds
itself with the same result in both.?2

Similar phenomena arise in some explanations that are not
proofs. For example, mathematicians such as Cardano and Euler had
developed various tricks for solving cubic and quartic equations. One
of Lagrange’s tasks in his monumental 1770—71 memoir “Reflections
on the Solution of Algebraic Equations” was to explain why his predeces-
sors’ various methods all worked (“pourquoi ces méthods réussissent”)
(Lagrange 1869 [1770-71], 206; see also Kline 1972, 601). By showing
that these different procedures all amount fundamentally to the same
method, Lagrange showed thatitwas no coincidence that they all worked.
In other words, faced with the fact that Cardano’s method works, Euler’s
method works, Tschirnhaus’s method works, and so forth, one feature of
this fact is obviously salient: that it identifies something common to each
of these methods (namely, that each works). Lagrange’s explanation
succeeds by tracing this common feature to other features that these
methods have in common—in sum, that they are all fundamentally the
same method: “These methods all come down to the same general prin-
ciple” (Lagrange 1869 [1770-71], 355, quoted in Kiernan 1971, 45). Part
of the point in asking why these methods all work is to ask whether their
success can be traced to a feature common to them all or is merely a
coincidence. (Lagrange then asked why this common method works;
earlier we saw his explanation of the “resolvent.”)

Simplicity is another feature that generally stands out when
a mathematical result possesses it.?®> An especially simple result typically

22. Steiner (1978a, 136) deems the second proof “more illuminating” than an induc-
tive proof. Steiner does not discuss mathematical coincidences or contrast the second
proof with separate proofs for the even and odd cases.

23. Is it unilluminating to characterize a “salient feature” as a feature that gives
content (in the manner I have described) to a demand for mathematical explanation,
while in turn characterizing “mathematical explanation” in terms of a salient feature? I do
not think that my proposal is thereby rendered trivial or unilluminating. We can say plenty
about salience other than through its role in mathematical explanation (by way of para-
digm cases such as those given in this essay, the kinds of features that are typically salient,
how features become salient, and so forth), and we can recognize a feature as salient apart
from identifying a proof as explanatory. We can likewise say plenty about mathematical
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cries out for a proof that exploits some similar, simple feature of the
setup. In contrast, a proof where the result, in all of its simplicity, appears
suddenly out of a welter of complexity—through some fortuitous can-
cellation or clever manipulation—tends merely to heighten our curiosity
about why the result holds. Such a proofleaves us wanting to know where
such a simple result came from. After such a proof is given, there often
appears a sentence like the following: “The resulting answer is extremely
simple despite the contortions involved to obtain it, and it cries out for a
better understanding” (Stanley 2012, 14). Then another proof that traces
the simple result to a similar, simple feature of the problem counts as
explaining why the result holds.

Examples of this kind often arise in proofs of “partition identities.”
The number p(n) of “partitions of n” is the number of ways that
the nonnegative integer n can be expressed as the sum of one or more
positive integers (irrespective of their order in the sum). For instance,
p(5) =7, since 5 can be expressed in seven ways: as 5, 4+ 1, 3+ 2,
3+14+1,24+2+1,2+1+1+1,and 1 +1+1+41+4 1. (By conven-
tion, p (0) = 1.) Here is a “partition identity” (proved by Euler in 1748):
The number po(n) of partitions of n into exclusively odd numbers
(“O-partitions”) equals the number pp(n) of partitions of n into
parts that are distinct (that is, that are all unequal—“D-partitions”).
For instance, po(5) =3 since 5, 3+1+1,and 1+1+1+1+1 are
the O-partitions of 5, and pp(5) = 3 since 5, 4+ 1, and 3 + 2 are the
D-partitions of 5.

There are two standard ways of proving partition identities: either
with “generating functions” or with “bijections.” By definition, the
“generating function” f(q) for a sequence ay, a;, ag...is apq’ + a;q'
+asq®+ ... = ap +aiq+asq® + .... It does not matter whether the
sum in the generating function converges because the generating func-
tion is merely a device for putting the sequence on display; “q™” does not
stand for some unknown quantity, but just marks the place where a,
appears. For example, the generating function for the sequence 1, —1,

explanation apart from its connection to salience. The connection my account alleges
between salience and mathematical explanation does no more to trivialize my account
than Van Fraassen’s pragmatic approach to scientific explanation is trivialized by the fact
that it characterizes a “scientific explanation” as an answer to a question defined in terms
of a contrast class, while it characterizes the “contrast class” in a given case as consisting of
the possible occurrences that are understood to be playing a certain role in a given
question demanding a scientific explanation (Van Fraassen 1980, 127).
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1,-1,1...is 1=q+q*—q”* +q*— .... This series results from “long
division” of 1+ q into 1; that is, it is the expansion of 1/(1 + q).
(Again, it does not matter whether this sum converges.) Such a “formal
power series” can generally be manipulated in precisely the same manner
as a genuine power series. For example, we can multiply (1/(1 + q)) by 2
to yield (2/(14q)) =2—2q+2q*—2q*+2q*— ..., the generating
function for the sequence 2, —2,2,—-2,2....

Now let’s find a generating function for the sequence of partitions
ofn: p(0), p(1), p(2),....Let’s “consider (or as that word often implies,
‘look out, here comes something from left field’)” (Wilf 2000, 6) this

formidable-looking generating function:**

A+q+q+¢+ .00+ +q*+¢°+ .00+ +¢° +q°+ ...)
A+q*+q°+q"%+..0)...

The product of the factors in this expression is a long polynomial a,
+a;q + aeq® + asq® + ... —the generating function for the sequence
ag, a1, a9.... What sequence is this? As an example, let’s compute as.
Since multiplying q™ by q" involves adding their exponents (q™ q"

= q™™), the coefficient of q® will be increased by 1 for every combination
of terms where the exponents add to 3, with exactly one term in the
combination drawn from each factor in the above expression. For
instance, q” from the first factor (1 +q +q* +q*+ ...) multiplied by
1’s from each other factor (1 = q°) will increase as by 1. Another 1 is
contributed to as by q from the first factor multiplied by q* from the
second factor and 1’s from each of the other factors. Another, final 1
comes from q® from the third factor multiplied by 1’s from each
other factor. Those three 1’s make ag = 3; each combination of expo-
nents adding to 3 contributes 1 to ag. Now the exponents in the first
factor (1+q+q®+q®+ ...) increase by 1, those in the second factor
(1+q%+ q*+ ...) increase by 2, and so forth. Thus, we can think of the
first factor’s exponents as counting by 1’s, the second factor’s exponents

24. Inreferring to the following expression as a “generating function,” Iam adopting
(as a referee put it) “standard loose mathematician-speak.” A “generating function” (as
the referee went on to say) is really an infinitary symbol—that is, a string of expressions
that takes the form a, + a,q + asq” + .... Therefore, the infinite product of generating
functions that is about to appear in the main text is not, strictly speaking, a generating
function. Rather, it is a string of strings that computes to a generating function in the
manner described in the main text. Accordingly, mathematicians standardly characterize
it as a “generating function.”
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as counting by 2’s, and so on. Therefore, when we add the exponents
from a combination of terms where exactly one term q" was drawn from
the first factor, one term q° from the second factor, and so forth, we can
think of this sum as representing the sum of f 1’s plus the sum of (s/2) 2’s
and so forth. Each combination that sums to n contributes 1 to q™’s
coefficient a,,. For instance, as we just saw in the case of q°, the product
of q® from the first factor (representing three 1’s) with 1’s from every
other factor (zero 2’s, zero 3’s...) contributes 1 to as; another 1 comes
from the product of q from the first factor (one 1) by q* from the second
factor (one 2) and 1’s from every other factor (zero 3’s, zero 4’s ... ); and
the final 1 comes from the product of q° from the third factor (one 3)
with 1’s from each of the other factors (zero 1’s, zero 2’s, zero 4’s...).
Thus, each of these combinations contributing 1 to as represents one
of the three partitions of 3: its partitions are 1 +1+1, 1 +2, and 3.
Thatis, ag equals the number of partitions of 3. The same thing happens
for every coefficient a,. Thus, the above expression is p(n)’s generat-
ing function: p(0) +p(1)q+ p(2)q*+ .... Since by “long division,”
I1=1+q+®+®+...)00-q)=0+¢+q*+..)0-q>D=1+
a*+q°+ ...) (1 — q®), the above product is

() () ()

Now let’s derive the generating functions for the numbers of odd-

partitions and distinct-partitions of n. In the generating function for p (n)
AI+q+ @+ ¢+ .00+ + "+ ¢+ .00+ + "+ "+ ...)
A+q*+q*+q%+..0)...,

the first factor (in counting by 1’s) represents the number of 1’s in the
partition, the second factor (in counting by 2’s) represents the number of
2’s,and so on. By including only the factors corresponding to the number
of I’s, number of 3’s, number of 5’s, and so on, we produce

I+q+q+q°+ .00+ +q +q"..00+q+q""+q"”...)...

()

the generating function for po(n). Returning to the m™ factor (1 + q™

+q?™ +q®™...) of p(n)’s generating function, we see that the terms
beyond q

™ allowed m to appear two or more times in the partition, so
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their removal yields pp(n)’s generating function
1+ +gH1+q")...

By manipulating the generating functions in various ways (justi-
fied for infinite products by taking to the limit various manipulations
for finite products), we can show (as Euler first did) that the two gener-
ating functions are the same, and hence that po(n) = pp(n):

() ()
B (1;) G:Zz) (1—1q3) G:Zi) (1_1q5) G:ZZ)
(=) (=) (=) (=) -

_ A-A+\ (A= ¢HA+¢D\ (A= A+ ¢®\ (A —¢HA+gh
1—¢ 1—¢2 1—¢3 1—¢*

=1+ +¢HA+4¢%...

Wilf (2000, 10) terms this “a very slick proof,” which is to say that
itinvolves not only an initial generating function “from left field” but also
a sequence of substitutions, manipulations, and cancellations having
no motivation other than that, miraculously, it works out to produce
the simple result in the end. Proofs of partition identities by generating
functions, although sound and useful, in many cases “begin to obscure
the simple patterns and relationships that the proof is intended to
illuminate” (Bressoud 1999, 46).

In contrast, “a common feeling among combinatorial mathema-
ticians is that a simple bijective proof of an identity conveys the deepest
understanding of why it is true” (Andrews and Eriksson 2004, 9; italics
in the original). A “bijection” is a 1 —1 correspondence; a bijective
proof that po(n) = pp(n) finds a way to pair each O-partition with one
and only one D-partition. Let us look at a bijective proof (from Sylvester
1882) that po(n) = pp(n). Display each O-partition as an array of dots, as
in the representation in figure 7 of the partition 7+7+5+5+3 +
1+141 of 30:
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Figure 7. A partition of 30

Each row has the number of dots in a part of the partition,?® with
the rows weakly decreasing in length and their centers aligned. (Each row
has a center dot since each partis odd.) Here is a simple way to transform
this O-partition into a D-partition. The first part of the new partition
(fig. 8) is given by the dots on a line running from the bottom up along
the center column and turning rightat the top—11 dots. The next partis
given by the dots on a line running from the bottom, up along a column
one dot left of center, turning left at the top—7 dots. The next part runs
from the bottom upward along a column one dot right of center, turning
rightat the last available row (the second row from the top) —6 dots. This
pattern leaves us with a fish-hook diagram (fig. 8).

The result is a D-partition (11 +7 4 6 + 4 4 2), and the reverse
procedure on that partition returns the original O-partition. With this
bijection between O-partitions and D-partitions, there must be the same
number of each. The key to the proof is that by “straightening the fish
hooks,” we can see the same diagram as depicting both an O-partition and
a D-partition.

Because the bijection is so simple, this proof traces the simple
relation between po(n) and pp(n) to a simple relation between the
O-partitions and the D-partitions. Moreover, the simple feature of the
setup that the proof exploits is similar to the result’s strikingly simple
feature: the result is that po(n) and pp(n) are the same, and the simple
bijection reveals that n’s O-partitions are essentially the same objects as
n’s D-partitions, since one can easily be transformed into the other. It is
then no wonder that po(n) = pp(n), since effectively the same objects

25. The “members” or “summands” of a partition are known as its “parts.” For
instance, the partition of 30 into 7+7+5+5+3+ 141+ 1 has eight parts (three
1’s, two 7’s, two 5’s, and one 3).
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I

Figure 8. Another partition of 30, displayed as fish hooks

are being counted twice. This is the source of the explanatory power
of a simple bijective proof. As Wilf (personal communication) puts it, a
simple bijective proof reveals that “in a sense the elements [of the two sets
of partitions] are the same, but have simply been encoded differently.”2%

That is, the bijective proof shows that in counting O-partitions or
D-partitions, we are effectively counting the same set of abstract objects.
Each of these objects can be represented by a dot diagram; the same
diagram can be viewed as representing an O-partition and a D-partition.
To emphasize this point (following Andrews and Eriksson 2004, 16-17),
consider this partition identity: the number of partitions of n with exactly
mparts equals the number of partitions of n having mas their largest part.
For instance, figure 9 gives representations of the partitions of 7 with
exactly three parts:2” Figure 10 gives each of these representations seen
from a different vantage point—namely, after being rotated one-
quarter turn counterclockwise and then reflected across a horizontal
line above it: These (figure 10) represent the partitions of 7 that have 3
as their largest part. Clearly, then, both sets of partitions are represented
by the same set of 4 arrays. A partition of one kind, seen from another

26. Perhaps (contrary to the passages I have quoted) some combinatorial mathema-
ticians regard the proof from generating functions as explanatory just like the simple
bijective proof. Perhaps, then, I should restrict myself to identifying what it is that makes
the bijective proof explanatory and not argue that the generating-function prooflacks this
feature, but merely that it is perceived as lacking this feature by those who regard it as less
explanatorily powerful than the bijective proof. (See the remark from Stanley in note 28.)

27. The next dot diagrams all have their rows weakly decreasing in length (just like
the earlier diagram), but (unlike the earlier diagram) their rows do not have their centers
aligned. (Since the parts are not all odd, some rows do not have center dots.) Rather, each
row is aligned on the left. Clearly, the same partition may be displayed in various dot
diagrams.
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5+1+1 4+2+1 3+2+2 3+3+1
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Figure 9. The partition of 7 having exactly three parts

vantage point, is a partition of the other kind. The number of partitions of
one kind is the same as the number of partitions of the other kind because
the same abstract object can be represented as either kind of partition,
and the number of those abstract objects is the same no matter how we
represent them.

Whereas the generatingfunctionology “seems like something
external to the combinatorics” (Andrews, personal communication)
that just miraculously manages to yield the simple result, a simple
bijective proof shows that there is the same number of partitions
of two kinds because partitions of those two kinds, looked at abstractly,
are the same things seen from different perspectives. Such a proof
“makes the reason for the simple answer completely transparent”
(Stanley 2012, 15); “it provides a ‘natural’ explanation...unlike the
generating function proof which depended on a miraculous trick”
(Stanley and Bjorner 2010, 24).28

7. Comparison to Other Proposals

I will briefly contrast my approach to proofs that explain with several
others in the recent literature.

28. I do not contend that any bijective proof (regardless of the bijection’s complexity
or artificiality) is explanatory, that no generating function proof is explanatory, or that
there is never a good reason to seek a generating-function proof once a simple, explan-
atory bijective proof has been found. Each kind of proof may have some value; for
instance, a generating-function proof may be much shorter or help us to find proofs of
new theorems. Also bear in mind that “the precise border between combinatorial [that s,
bijective] and non-combinatorial proofs is rather hazy, and certain arguments that to an
inexperienced enumerator will appear non-combinatorial will be recognized by a more
facile counter as combinatorial, primarily because he or she is aware of certain standard
techniques for converting apparently non-combinatorial arguments into combinatorial
ones” (Stanley 2012, 13).
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3+1+1+1+1 3+2+1+1 3+3+1 3+2+2

Figure 10. The previous dot diagrams, rotated

According to Steiner (1978a), a proof explains why all S;s are P if
and only if it reveals how this theorem depends on S;’s “characterizing
property”—that is, on the property essential to being S; that is just
sufficient to distinguish S;s from other entities in the same “family”
(for example, to distinguish triangles from other kinds of polygons).
To reveal the theorem’s dependence on the characterizing property,
the proof must be “generalizable.” That s, if S;’s characterizing property
is replaced in the proof by the characterizing property for another kind
Sy in the same family (but the original “proofidea” is maintained), then
the resulting “deformation” of the original proof proves that all Ses are
P, for some property Py incompatible with being P;. Thus, the theorem’s
explanation helps to show that there are different, but analogous,
theorems for different classes in the same family.

Steiner’s proposal nicely accommodates some of the explanatory
proofs that I have examined (at least under a natural reading of the
relevant “family” and “proof idea”). For instance, the proof I presented
as explaining why the product of any three consecutive nonzero natural
numbers is divisible by 6 (=1 X 2 X 3) could be deformed to prove that
the product of any four consecutive nonzero natural numbers is divisible
by 24 (=1 X 2 X 3 X 4). However, this four-number result could also be
proved by mathematical induction—by a proof thatis a “deformation” of
the proof by mathematical induction of the three-number result. Yet
(I have argued) the inductive proof of the three-number result is not
explanatory (in a context where the result’s treating every case alike is
salient), and its “generalizability” in Steiner’s sense does not at all incline
me to reconsider thatverdict.?? The proof treats the first triple of nonzero

29. Steiner (1978a, 151) says that “inductive proofs usually do not allow deformation”
and hence are not explanatory, because by replacing S;’s characterizing property with
So’s in the original inductive proof, we do not automatically replace the original theorem
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natural numbers differently from every other triple, rather than identi-
fying a property common to every triple that makes each divisible by 6.

Furthermore, some of the explanatory proofs that I have identi-
fied simply collapse rather than yield new theorems when they are
deformed to fit a different class in what is presumably the same “family.”
For instance, the proof from the isosceles trapezoid’s symmetry does not
go anywhere when we shift to a nonisosceles trapezoid, since the sym-
metry then vanishes.?’ For some of the other explanatory proofs I have
presented, it is unclear what the relevant “family” includes. What, for
instance, are the other classes in the family associated with d’Alembert’s
theorem that roots come in complex-conjugate pairs? Even if we could
ultimately discover such a family, we do not need to find it in order
to recognize the explanatory power of the proof exploiting the setup’s
invariance under the replacement of ¢ with — 7. (I will return to this point
momentarily.)

I turn now to Kitcher (1984, esp. 208-9, 227; 1989, esp. 423-26,
437), who offers a unified account of mathematical and scientific expla-
nation; in fact, he sees explanation of all kinds as involving unification.
Roughly speaking, Kitcher says that an explanation unifies the fact being
explained with other facts by virtue of their all being derivable by argu-
ments of the same form. Explanations instantiate argument schemes
in the optimal collection (“the explanatory store”)—optimal in that
arguments instantiating these schemes manage to cover the most facts
with the fewest different argument schemes placing the most stringent
constraints upon arguments. An argument instantiating an argument
scheme excluded from the explanatory store fails to explain.

at the start of the inductive step with the new theorem to be proved—and in an inductive
argument, the theorem must be introduced at the start of the inductive step. It seems to
me, however, that if we take the inductive proof that the product of any three consecutive
nonzero natural numbers is divisible by 6 (= 1 X 2 X 3) and replace the initial reference
to three consecutive nonzero natural numbers with a reference to four consecutive non-
zero natural numbers, then the first step of the inductive proof is automatically that the
first case of four consecutive nonzero natural numbers is obviously divisible by their
product (1 X 2 X 3 X 4 = 24), and this gives usimmediately the new theorem to be proved
(namely, that the product of any four consecutive nonzero natural numbers is divisible
by 24) for use at the start of the second step. So in this case, the inductive proof permits
deformation.

30. Resnik and Kushner (1987, 147-52) likewise argue that the standard proof of the
intermediate value theorem (which, they say, is explanatory if any proofs are) simply
collapses if any attempt is made to shift it to cover anything besides an interval over the
reals (such as over the rationals or a disjoint pair of intervals over the reals).
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Thus, Kitcher sees a given mathematical proof’s explanatory
power as arising from the proof’s relation to other proofs (such as their
all instantiating the same scheme or their covering different facts).
My account contrasts with Kitcher’s (and with Steiner’s) in doing justice
to the fact that (as we have seen in various examples) we can appreciate a
proof’s explanatory power (or impotence) just from examining the
details of that proofitself, without considering what else could be proved
byinstantiating the same scheme (or “proofidea”) orhow much coverage
the given proof adds to whatever is covered by proofs instantiating other
schemes. In addition, Kitcher regards all mathematical explanations as
deriving their explanatory power from possessing the same virtue: the
scheme’s membership in the “explanatory store.” It seems to me more
plausible (especially given the diversity of our examples) to expect
different mathematical explanations to derive their explanatory power
by virtue of displaying different traits. On my approach, different traits
are called for when the result being explained has different salient
features.

A typical proof by “brute force” uses a “plug and chug” technique
that is perforce applicable to a very wide range of problems. Presumably,
then, its proof scheme is likely to belong to Kitcher’s “explanatory store.”
(Not every brute-force proof instantiates the same scheme, but a given
brute-force proof instantiates a widely applicable scheme.) For example,
as I mentioned in section 5, we could prove the theorem regarding isos-
celes trapezoids by expressing the setup in terms of coordinate geometry
and then algebraically grinding out the result. The same strategy could
be used to prove many other geometric theorems. Nevertheless, these
proofs lack explanatory power. This brute-force proof of the trapezoid
theorem is unilluminating because it begins by expressing the entire
setup in terms of coordinate geometry and never goes on to characterize
various particular features of the setup as irrelevant. Consequently, it fails
to pick out any particular feature of isosceles trapezoids (such as their
symmetry) as the feature responsible for the theorem.

A new proof technique can explain why some theorem holds even
if that technique allows no new theorems to be proved. My approach can
account for this feature of mathematical explanation. It is more difficult
to accommodate on Kitcher’s proposal, since any explanatory argument
scheme must earn its way into the “explanatory store” by adding coverage
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(without unduly increasing the number of schemes or decreasing the
stringency of their constraints).3!

I turn finally to Resnik and Kushner (1987), who doubt that any
proofs explain simpliciter. They contend that a proof’s being “explanatory”
to a given audience is nothing more than its being the kind of proof
that the audience wants—perhaps in view of its premises, its strategy,
its perspicuity, or the collateral information it supplies (or perhaps
any proof whatsoever of the theorem would do). Contrary to Resnik
and Kushner, I do not think that whenever someone wants a certain
kind of proof, for whatever reason, then such a proof qualifies for them
as explaining why the theorem being proved holds. Rather, mathematical
practice shows that an explanatory proof requires some feature of the
result to be salient and requires the proof to exploit a similar noteworthy
feature in the problem. Thus, the demand for an explanation is not
simply the demand for a certain kind of proof; the demand arises
from a certain feature of the result and is satisfied only by a proof that
involves such a feature from the outset. For example, we may want to see
a proof of the “calculator number” theorem that proceeds by checking
each of the 16 calculator numbers individually. But this proof merely
heightens our curiosity, motivating us to seek the reason why all of
the calculator numbers are divisible by 37. It is not the case that any
kind of proof we happen to want counts as an explanation when we
want it. Moreover, explanatory power is just one of many properties the
possession of which would make a proof desirable.

8. Conclusion

I have tried to identify the basis on which certain proofs but not others
are explanatory. Symmetry, unity, and simplicity are among the aspects
of mathematical results that are commonly salient. But many other, less
common features are sometimes outstanding in mathematical results
and may thereby inform the distinction between proofs that explain
and proofs that do not. Admittedly, several fairly elastic notions figure
in my idea of a proof’s exploiting the same kind of feature in the problem
as was salientin the result. This elasticity allows my proposal to encompass
a wide range of cases (as I have shown). Insofar as the notions figuring
in my proposal have borderline cases, there will correspondingly be room

31. Tappenden (2005) offers a similar objection to this “winner take all” feature of
Kitcher’s account.
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for mathematical proofs that are borderline explanatory.*? However, the
existence of such cases would not make a proof’s explanatory power rest
merely “in the eye of the beholder.”

AsInoted at the outset, itis challenging to find a source of explan-
atory asymmetry for mathematical explanations, since the usual suspects
in scientific explanation (such as causal and nomological priority) are
unavailable. In response, I have gestured toward the priority that axioms
in mathematics have over theorems, but I have also emphasized math-
ematical explanations that operate in connection with “problems,” each
of which is characterized by a “setup” and a “result.” This structure
of setup and result adds an asymmetry that enables mathematical expla-
nation to get started by allowing why questions to be posed (as in our first
example, where Zeitz [2000, 5] declares that he wants to “understand why
the coin problem [that is, the setup] had the answer [that is, the result]
that it did”). When we consider some proof that extracts the property of
being G from the property of being F, whether the proof is explanatory
may depend on whether we take the setup and result as involving being F
and being G, respectively, or instead as (for example) being non-G and
being non-F. Whether the proofis explanatory may also depend on which
features of the theorem are salient to us. But despite these context-
sensitive features, it does not follow that a proof is explanatory merely
by virtue of striking its audience as explanatory.

Of course, if some extraterrestrials differ from us in which features
of a given theorem they find salient, then it follows from my account that
those extraterrestrials will also differ from us in which proofs they ought
toregard as explanatory. I embrace this conclusion. In different contexts,
we properly regard different proofs of the same theorem to be explana-
tory—namely, in contexts where different features of the theorem are
salient. Furthermore, if some extraterrestrials differed from us so much
that they never regarded symmetry, unity, and simplicity as salient, then
even if we and they agreed on the truth of various mathematical theo-
rems, their practices in seeking and refining proofs of these theorems
would differ so greatly from ours that it would be a strain to characterize
them as doing mathematics.*® As cases such as the embrace of imaginary

32. See notes 16 and 21.

33. 1 have specified that the extraterrestrials never regard symmetry as salient, not
merely that they fail to regard a particular symmetry in a given theorem as salient, because
our attention can reasonably be drawn to one theorem’s symmetry by that theorem’s
being compared to another theorem exhibiting a similar symmetry that is already salient.
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numbers illustrate, the search for mathematical explanations often drives
mathematical discovery and innovation. Such extraterrestrials would not
be seeking the same things as we do in doing mathematics.

The role that salience plays in my account does not suggest that
when mathematicians talk about a given proof’s “explanatory power,”
they are merely gesturing toward some aesthetically attractive quality
that the proof possesses—a quality that is very much in the eye of
the beholder. Salience’s role does not make mathematical explanations
differ sharply from all scientific explanations. On the contrary, some
scientific explanations operate in the same way as the mathematical
explanations I have examined. For instance, consider the notorious
(or, if you prefer, “mildly famous”) puzzle, “Why are mirror images
reversed sideways but not up and down?” (Bennett 1970, 181; see also
Block 1974).3* This problem involves a setup: typically (as in Martin 2002,
176), you are standing before a full-length mirror, wearing a ring on your
left hand. It also involves a result: your mirror image. The result’s ring is
on its right hand, but it is not standing on its head. The why question is
asking for a derivation in which the result, with its salient asymmetry
between left-right and up-down, is traced to a similar asymmetry in the
setup. The demand is not for a causal or nomological explanation.
Indeed, a causal account of the reflection as given by geometrical optics
will not suffice to answer this why question: “Where does the asymmetry
come from? . .. To explain horizontal but not vertical reversal with optical
ray diagrams is doomed to failure, for they are symmetrical and equally
valid when held in any orientation” (Gregory 1987, 492; see also Block
1974, 267). That is, a mirror reflects light rays symmetrically about the
normal to the surface at the point of incidence. No asymmetry lurks here.
The why question requires an answer that uncovers an asymmetry in the
setup that is similar to the salient asymmetry in the result. Here is such an
answer to the why question:

Why do you count that mirror image as right/left reversed? Because you
imagine turning yourself so that you would face in the same direction as
your mirror-image now faces ... and moving in back of the mirror to the
place where it appears your image now stands. Having turned and moved,
your hand with the ring on itis in the place where the un-ringed hand of
your mirror-image is. ... In other words, when you turn this way. .. [your

34. I am grateful to John Roberts for suggesting the mirror example as an apt
comparison.
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mirror image is] reversed left-to-right, compared to you. (Martin
2002, 176-77; see also Block 1974, Gregory 1987)

The setup’s asymmetry, responsible for the asymmetrical privileging of
one dimension (left-right) over the others, lies in a hidden feature of the
setup: how you imagine moving from facing the mirror to facing out from
behind it, namely, by rotating yourself around the vertical axis. This fea-
ture of the setup privileges that axis over the others. It answers the why
question by tracing the result, with its salient asymmetry, back to a similar
asymmetry in the setup. After all, we could imagine a different operation
by which you could go from facing the mirror to facing out from behind
it: by rotating yourself around a horizontal axis. Then you would be on
your head behind the mirror and so reversed vertically (but not left-right)
relative to your mirror image. Relative to that means of getting behind
the mirror, the image is reversed vertically but not left-right. So mirrors
reverse leftright rather than up-down only given the particular way we
imagine getting behind them—that is, only by virtue of the salience of
one axis for turning ourselves behind a mirror.*

Mathematicians do occasionally reflect upon explanation in
mathematics. For instance, Timothy Gowers (2000, 73) writes, “[Some]
branches of mathematics derive their appeal from an abundance of mys-
terious phenomena that demand explanation. These might be striking
numerical coincidences suggesting a deep relationship between areas
that appear on the surface to have nothing to do with each other, argu-
ments which prove interesting results by brute force and therefore do not
satisfactorily explain them, proofs that apparently depend on a series of
happy accidents.” I hope that this essay has managed to unpack some of
these provocative remarks.
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